
Approved for public release; distribution is unlimited. Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-
10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”), HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), HR001122C0110 (“ETC”), HR001123C0031 (“MTSS”),
and FA8750-24-C-B047 (“DEC”) as part of the DARPA I2O CRASH, I2O MRC, MTO SSITH, and I2O CPM research programs. The views, opinions, and/or findings contained in this report are those of
the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CHERI
Capability Hardware Enhanced RISC Instructions

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann, Brooks Davis
Hesham Almatary, Ricardo de Oliveira Almeida, Jonathan Anderson, Alasdair Armstrong, Rosie Baish, Peter Blandford-Baker,
John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brian Campbell, David Chisnall, Jessica Clarke, Nirav Dave,
Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Ivan Gomes-Ribeiro, Khilan Gudka, Brett Gutstein,

Angus Hammond, Graeme Jenkinson, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, Jessica Man,
A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch,

Edward Napierala, George Neville-Neil, Kyndylan Nienhuis, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu,
Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi, Thomas Sewell, Stacey Son,

Ian Stark, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia, Vadim Zaliva,
and Bjoern A. Zeeb

SRI International, Capabilities Limited, and the University of Cambridge
CHERI Conference – 12 November 2024

Approved for public release; distribution is unlimited.

CHERI development was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”),
HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), HR001122C0110 (“ETC”), HR001123C0031 (“MTSS”), and FA8750-
24-C-B047 (“DEC”) as part of the DARPA I2O CRASH, I2O MRC, MTO SSITH, and I2O CPM research programs. The views,
opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

Arm’s Morello and portions of the Morello-enabled software stack were supported by the Innovate UK project 105694 (“Digital
Security by Design (DSbD) Technology Platform Prototype”), Innovate UK project 107145 (“Assessing the Viability of an Open-
Source CHERI Desktop Software Ecosystem”), and Innovate UK project 10027440 (“Developing and Evaluating an Open-Source
Desktop for Arm Morello”).

We further acknowledge EPSRC REMS (EP/K008528/1), EPSRC CHaOS (EP/V000292/1), ERC ELVER (789108), the Isaac Newton
Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge, Arm Limited, Google,
Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

2

CHERI introduction
• CHERI is a new processor technology that mitigates software security

vulnerabilities

• Developed by the University of Cambridge and SRI International starting in
2010, supported by DARPA

• Arm collaboration from 2014, supported by DARPA; Arm Morello prototype
processor, board announced shipped 2022, supported by UKRI

• Microsoft CHERIoT (RISC-V) Ibex core announced Sep 2022 and open
sourced in February 2023; lowRISC Sonata board announced Sep 2023;
Codasip IP core products announced October 2023

• Today’s talk:

• What is CHERI and how does it change software security?

• Transition efforts including Arm, Google, Microsoft, and beyond …

• http://www.cheri-cpu.org/

• Watson, et al., CHERI: Hardware-Enabled C/C++ Memory Protection at
Scale, IEEE Security and Privacy Magazine, July-August 2024.

An early experimental FPGA-
based CHERI tablet prototype
running the CheriBSD
operating system and
applications, Cambridge, 2013.

3

High-performance Arm
Morello chip able to run a full
CHERI software stack,
Cambridge, 2022

http://www.cheri-cpu.org/

What is CHERI?
• CHERI is a processor architectural protection model

• Composes a capability-system model with CPU and software
• Adds new primitives to Instruction-Set Architectures (ISAs)

• Implemented CPU and SoC microarchitectural extensions
• Enables new security behavior in software

• CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases (TCBs)
• Hypervisors, operating systems, server software, language runtimes, browsers, ….

• Fine-grained memory protection deterministically closes many arbitrary
code execution attacks, and directly impedes common exploit-chain tools

• Scalable compartmentalization mitigates many vulnerability classes .. Even
unknown future classes .. by extending the idea of software sandboxing

• There are now multiple industrial implementations

4

Morello chip – 7nm quad-core multi-
GHz Arm processor and SoC with
CHERI extensions, Arm, 2022.

Capability systems
• The capability system is an abstract design pattern for how

processors, languages, OSes, … can control access to resources

• Capabilities are communicable, unforgeable tokens of authority

• In capability-based systems, resources are reachable only via capabilities

• Capability systems limit the scope and spread of damage from
accidental or intentional software misbehavior

• They do this by making it natural and efficient to implement, in
software, two security design principles:

• The principle of least privilege dictates that software should run with the
minimum privileges to perform its tasks

• The principle of intentional use dictates that when software holds multiple
privileges, it must explicitly select which to exercise

• These two principles are the heart of the CHERI design
5

The CAP computer project ran from
1970-1977 at the University of
Cambridge, led by R. Needham, M.
Wilkes, and D. Wheeler.

TLP:CLEAR

8

TLP:CLEAR

products. Threat models consider a product’s specific use-case and enables development
teams to fortify products. Finally, senior leadership should hold teams accountable for
delivering secure products as a key element of product excellence and quality.

Secure-by-Design Tactics

The Secure Software Development Framework (SSDF), also known as National Institute of
Standards and Technology’s (NIST) SP 800-218, is a core set of high-level secure software
development practices that can be integrated into each stage of the software development
lifecycle (SDLC). Following these practices can help software producers become more
effective at finding and removing vulnerabilities in released software, mitigate the potential
impact of the exploitation of vulnerabilities, and address the root causes of vulnerabilities to
prevent future recurrences.

The authoring agencies encourage the use of Secure-by-Design tactics, including principles
that reference SSDF practices. Software manufacturers should develop a written roadmap to
adopt more Secure-by-Design software development practices across their portfolio. The
following is a non-exhaustive list of illustrative roadmap best practices:

• Memory safe programming languages (SSDF PW.6.1): Prioritize the use of memory safe
languages wherever possible. The authoring agencies acknowledge that other memory
specific mitigations, such as address space layout randomization (ASLR), control-flow
integrity (CFI), and fuzzing are helpful for legacy codebases, but insufficient to be
viewed as secure-by-design as they do not adequately prevent exploitation. Some
examples of modern memory safe languages include C#, Rust, Ruby, Java, Go, and
Swift. Read NSA’s memory safety information sheet for more.

• Secure Hardware Foundation: Incorporate architectural features that enable fine-
grained memory protection, such as those described by Capability Hardware Enhanced
RISC Instructions (CHERI) that can extend conventional hardware Instruction-Set
Architectures (ISAs). For more information visit, University of Cambridge’s CHERI
webpage.

• Secure Software Components (SSDF PW 4.1): Acquire and maintain well-secured
software components (e.g., software libraries, modules, middleware, frameworks,) from
verified commercial, open source, and other third-party developers to ensure robust
security in consumer software products.

• Web template frameworks (SSDF PW.5.1): Use web template frameworks that
implement automatic escaping of user input to avoid web attacks such as cross-site
scripting.

• Parameterized queries (SSDF PW 5.1): Use parameterized queries rather than including
user input in queries, to avoid SQL injection attacks.

• Static and dynamic application security testing (SAST/DAST) (SSDF PW.7.2, PW.8.2):

CISA | NSA | FBI | ACSC | NCSC-UK | CCCS | BSI | NCSC-NL | CERT NZ | NCSC-NZ

Disclaimer: This document is marked TLP:CLEAR. Disclosure is not limited. Sources may use TLP:CLEAR when information
carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release.
Subject to standard copyright rules, TLP:CLEAR information may be distributed without restriction. For more information on
the Traffic Light Protocol, see http://www.cisa.gov/tlp/.

TLP:CLEAR

 TLP

Shifting the Balance of Cybersecurity Risk:
Principles and Approaches for Security-by-
Design and -Default
Publication: April 13, 2023

Cybersecurity and Infrastructure Security Agency

NSA | FBI | ACSC | NCSC-UK | CCCS | BSI | NCSC-NL | CERT NZ | NCSC-NZ

CISA, NSA, FBI, NCSC, and ally cybersecurity organisations recommend CHERI

6

April 2023

7

CHERI PROTECTION MODEL
AND ARCHITECTURE

8

Architectural primitives for software security

9

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

virtual address (64 bits)

The weakness: Pointers

10

64
-b

it
po

in
te

r

Allocation

Virtual
address
space

• Implemented as integer virtual addresses (VAs)

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – can be injected/corrupted

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

Ø Attacks on data and code pointers are highly effective, often
achieving arbitrary code execution

CHERI 128-bit capabilities (64-bit, MMU-enabled)

Capabilities extend integer memory addresses with protection metadata:

• Out-of-band tags protect capability integrity/derivation in registers + memory

• Dereferencing an invalid capability (tag value of zero) throws an exception

• Overwriting a capability in memory clears its validity tag

• Bounds and permissions authorize access to memory

• Dereferencing a capability outside of its bounds, permissions, etc., throws an exception

• Guarded manipulation controls how capability values themselves may be manipulated

• E.g., enforcing provenance validity and monotonicity

Virtual address space

12
8-

bi
t

ca
pa

bi
lit

y

v

1-
bi

t
ta

g

permissions
Bounds compressed
relative to address

64-bit virtual address

Upper bound

Lower bound

Pointer address Memory
allocation

11

CHERI’s tag enables
deterministic, secrets-free

protection

Capability semantics applied to C/C++ pointers

• Tags protect the integrity and provenance validity of pointers by:

• Constraining manipulation, detecting corruption, and preventing injection (e.g., via the network)

• Enabling accurate and deterministic detection, efficient tracking and revocation (i.e., temporal safety)

• Bounds prevent pointers from being used to access the wrong object (i.e., spatial safety)

• Monotonicity prevents pointer privilege escalation (e.g., broadening bounds)

• Permissions limit unintended use of pointers (e.g., W^X for pointers)

• Sealing prevents dereferencing, and enables non-monotonic domain transition

→ Deterministic, secrets-free memory protection and scalable software compartmentalization

12

Globals

Data

Heap Stack

Code

Control flow

Monotonicity Permissions
Integrity and

provenance validity
Bounds

CHERI MICROARCHITECTURE AND
PROTOTYPES

13

CHERI demonstrated at a range of scales

14

CHERIoT Ibex microcontroller
32-bit RISC-V baseline ISA
3-stage pipeline, no MMU, 200-300MHz
CHERIoT RTOS embedded OS

Arm Morello application core + SoC, based on Neoverse N1
64-bit Arm-A baseline ISA
Multicore, MMU-enabled, out-of-order core 2.5GHz
CHERI-adapted FreeBSD, Linux, seL4 OSes

IoT,
roots of trust

Mobile
devices,

data
centers

Supported by InnovateUK as part of Digital Security by Design (DSbD)

Automotive,
embedded,

high-end IoT

Codasip X730 application core, based on A730
64-bit RISC-V baseline ISA
Dual-issue, pipelined, with MMU
CHERI-adapted FreeBSD, Linux, seL4 OSes

Arm Morello (2022)
• £119M government, academia, and industrial

research program led by UK Research and
Innovation (UKRI)

• Announced partners: Arm, Google, Microsoft

• 15+ UK universities with research grants

• 70+ funded business incubation projects

• Baseline for design: Neoverse N1 core

• 2.5GHz quad-core, superscalar

• Implements CHERI extensions

• Runs full CHERI-enabled software stacks

• Definitely a prototype, but a very powerful one!

• Roughly a thousand chips manufactured for use
by research + development labs

15

The Arm Morello Evaluation Platform -
Validating CHERI-based Security in a
High-performance System

Richard Grisenthwaite, Arm Ltd, Cambridge, UK
Graeme Barnes, Arm Ltd, Cambridge, UK
Robert N. M. Watson, University of Cambridge, Cambridge, UK
Simon W. Moore, University of Cambridge, Cambridge, UK
Peter Sewell, University of Cambridge, Cambridge, UK
Jonathan Woodruff, University of Cambridge, Cambridge, UK

Abstract— Memory safety issues are a persistent source of security vulnerabilities, with conventional
architectures and the C/C++ codebase chronically prone to exploitable errors. The CHERI research
project has explored a novel architectural approach to ameliorate such issues using unforgeable
hardware capabilities to implement pointers.

Morello is an Arm experimental platform for evaluation of CHERI in the Arm architecture context, to
explore its potential for mass-market adoption. This paper describes the Morello Evaluation Platform;
covering the motivation; the functionality of the Morello architectural hardware extensions, their
potential for fine-grained memory safety and software compartmentalization; their formally proven
security properties; their impact on the micro-architecture of the high-performance out-of-order
multi-processor Arm Morello processor; and the software enablement program by Arm, University of
Cambridge, and Linaro. Together, this allows a wide range of researchers in both industry and
academia to explore and assess the Morello platform. 1

Introduction

Arm believes that security is the greatest challenge that computing needs to address to meet its full
potential. Arm technology is used in products that are transforming every industry by enabling
access to data and communications, and by extracting information and meaning from that data. This
transformation continues in our society wherever the application of computing resources can make
people's lives easier and more connected. Unfortunately, this increasing reliance on computing has
created unprecedented opportunities for criminals, as can be seen in the ever-growing cost of
cybercrime. In addition, the growing reliance of national infrastructure on technology means that
computer security is part of National Security. Given this context, seems likely that the boundaries of
the computing revolution will be determined by the security of our computing systems.

There is ample evidence that memory safety issues such as buffer overflows and use-after-free have
been a persistent source of vulnerabilities for many years, and this continues in many ecosystems
1,2. While languages such as Rust offer the prospect of more inherent memory safety, the reality is
that there is a huge body of C and C++ code being used, written, and adapted every day, and there
are many undetected vulnerabilities waiting to be exploited. Arm has introduced the Memory
Tagging Extensions in recent years to provide a mechanism to help identify memory safety issues,
and these have demonstrated that ordinary code has a great number of latent memory safety errors.

For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) license.

IEEE Micro Journal 2023

Microsoft CHERIoT core (2023)
• CHERI-extended Ibex microcontroller

• Microcontroller used in OpenTitan, etc.

• CHERI-RISC-V tuned for microcontrollers

• Clean-slate memory-safe, compartmentalized embedded
OS for high-exposure applications

• CHERI extensions for revocation in SRAM

• Open sourced in February 2023

• Collaboration across Microsoft Research, MSRC,
Azure Silicon, and Azure Edge + Platform

• Various in-progress productizations for embedded
use cases — whether IoT, roots of trust, etc.

16

CHERIoT: Complete Memory Safety for Embedded Devices
Saar Amar∗

saaramar5@gmail.com
Microsoft

Tel Aviv, Israel

David Chisnall∗
David.Chisnall@cl.cam.ac.uk

Microsoft
Cambridge, UK

Tony Chen
tonychen@microsoft.com

Microsoft
Redmond, Washington, USA

Nathaniel Wesley Filardo∗
nwf20@cam.ac.uk

Microsoft
Cambridge, UK

Ben Laurie
benl@google.com

Google
London, UK

Kunyan Liu∗
kunyanliu@microsoft.com

Microsoft
San Diego, California, USA

Robert Norton∗
robert.norton@microsoft.com

Microsoft
Cambridge, UK

Simon W. Moore
Simon.Moore@cl.cam.ac.uk
University of Cambridge

Cambridge, UK

Yucong Tao
Yucong.Tao@microsoft.com

Microsoft
Mountain View, California, USA

Robert N. M. Watson
robert.watson@cl.cam.ac.uk
University of Cambridge

Cambridge, UK

Hongyan Xia†∗
Jerryxia32@gmail.com

Arm Ltd.
Cambridge, UK

ABSTRACT
The ubiquity of embedded devices is apparent. The desire for in-
creased functionality and connectivity drives ever larger software
stacks, with components from multiple vendors and entities. These
stacks should be replete with isolation and memory safety tech-
nologies, but existing solutions impinge upon development, unit
cost, power, scalability, and/or real-time constraints, limiting their
adoption and production-grade deployments. As memory safety
vulnerabilities mount, the situation is clearly not tenable and a new
approach is needed.

To slake this need, we present a novel adaptation of the CHERI
capability architecture, co-designed with a green-�eld, security-
centric RTOS. It is scaled for embedded systems, is capable of
�ne-grained software compartmentalization, and provides a�or-
dances for full inter-compartment memory safety. We highlight
central design decisions and o�oads and summarize how our pro-
totype RTOS uses these to enable memory-safe, compartmentalized
applications. Unlike many state-of-the-art schemes, our solution
deterministically (not probabilistically) eliminates memory safety
vulnerabilities while maintaining source-level compatibility. We
characterize the power, performance, and area microarchitectural
impacts, run microbenchmarks of key facilities, and exhibit the

∗These authors made signi�cant contributions to the design and implementation
without which the project would not have been possible.
†Work conducted while at Microsoft.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614266

practicality of an end-to-end IoT application. The implementation
shows that full memory safety for compartmentalized embedded
systems is achievable without violating resource constraints or real-
time guarantees, and that hardware assists need not be expensive,
intrusive, or power-hungry.

ACM Reference Format:
Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete Memory Safety
for Embedded Devices. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’23), October 28–November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3613424.3614266

1 INTRODUCTION
The attack surface of embedded devices is no longer limited to
physical attacks, in an increasingly connected world. From con-
sumer electronics (smart watches, WiFi chips) to security-critical
devices (self-driving vehicles, aviation and smart grids) and more
recently IoT applications, physical isolation is rarely the boundary
in modern day embedded devices. With the increase of connectiv-
ity comes combinatorial growth of the attack surface. Sadly, the
resource constraints and the low-level programming environment
mean solving even the most basic problem of memory safety still
poses as a monumental challenge. Worse, the gap between the at-
tack surface area and the level of defense widens further when such
embedded devices are deployed into complicated multi-tasking sce-
narios with a Real-Time Operating System (RTOS) and multiple
software stacks from di�erent vendors.

Even though researchers have disclosed an alarming number
of memory vulnerabilities in recent years [6, 11, 15], the lessons
learned from desktop and server systems do not directly translate
to embedded systems. Page table techniques, sanitizers, dynamic

IEEE MICRO 2023

Announced, in-progress, CHERI-RISC-V adoption

17

● Microsoft open-source CHERIoT-
Ibex 32-bit microcontroller IP core

● Google CHERI-enabled open-
source ML accelerators

● lowRISC CHERIoT-based Sonata
FPGA development board

● SCI Semiconductor CHERIoT-
based embedded SoCs

● Codasip proprietary 64-bit, MMU-
enabled application core IP

● Active RISC-V standardization
effort in RISC-V InternationalFirst production CHERI-RISC-V

silicon to ship in 2025

HOW SOFTWARE WORKS ON CHERI

18

Two key applications of the CHERI primitives
1. Efficient, fine-grained memory protection for C/C++

• Strong source-level compatibility, but requires recompilation

• Deterministic and secret-free referential, spatial, and temporal memory safety

• Retrospective studies estimate ⅔ of memory-safety vulnerabilities mitigated

• Generally modest overhead (0%-5%, some pointer-dense workloads higher)

2. Scalable software compartmentalization

• Multiple software operational models from objects to processes

• Increases exploit chain length: Attackers must find and exploit more vulnerabilities

• Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

19

CHERI C/C++ MEMORY PROTECTION

20

What do we mean by C/C++ memory safety?
• Complex question, as while memory unsafety is clearly present, neither language

defines what memory safety could mean

• Our thoughts from over a decade working on CHERI:

• Memory safety for C/C++ is (pragmatically) anything that would have defended
you from memory-safety vulnerabilities

• Vulnerability mitigation deterministically coerces bugs that are currently
vulnerabilities back into bugs – i.e., you would no longer urgently patch them

• Exploit mitigation interferes with attack techniques exploiting memory unsafety

• Deterministic mitigation means that defenses always work regardless of
information leakage, attempts to brute force, and so on

• Our ambition for CHERI C/C++ memory safety is to mitigate the vast majority
(>70%) of memory-safety vulnerabilities with full determinism

• Actual mitigation substantially exceeds this rate due to capabilities throughout the
language runtime for exploit mitigation, but our field lacks methodology to evaluate this

21

Useful
definitions for
CHERI C/C++
defenses, but

also in
comparing to

other memory-
safety

techniques

Memory-safe CHERI C/C++

• Capabilities used to implement all pointers
Implied – Control-flow, stack pointers, GOTs, PLTs, …

Explicit – All C/C++-level pointers and references

• Strong referential, spatial, and heap temporal safety

• Minor changes to C/C++ semantics comparable in
[scope, cost] to the 32-bit to 64-bit transition

• We have adapted in excess of 150MLoC of open-
source C/C++ code to strong memory safety with
minimal or no changes to most code

• Watson, et al. CHERI C/C++ Programming
Guide, UCAM-CL-TR-947, June 2020

22

Technical Report
Number 947

Computer Laboratory

UCAM-CL-TR-947

ISSN 1476-2986

CHERI C/C++ Programming Guide

Robert N. M. Watson, Alexander Richardson,

Brooks Davis, John Baldwin, David Chisnall,

Jessica Clarke, Nathaniel Filardo,

Simon W. Moore, Edward Napierala,

Peter Sewell, Peter G. Neumann

June 2020

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

https://www.cl.cam.ac.uk/

Microsoft security analysis of CHERI C/C++
• Microsoft Security Response Center (MSRC) study analyzed all 2019

Microsoft critical memory-safety security vulnerabilities

• Metric: “Poses a risk to customers → requires a software update”

• Vulnerability mitigated if no security update required

• Blog post and 42-page report

• Concrete vulnerability analysis for spatial safety

• Abstract analysis of the impact of temporal safety

• Red teaming of specific artifacts to gain experience

• CHERI, “in its current state, and combined with other mitigations, it
would have deterministically mitigated at least two thirds of all
those issues”

• These quantitative, evidenced results are consistent with our own
findings with the open-source software corpus

1 | P a g e

Microsoft Security Response Center (MSRC)

SECURITY ANALYSIS OF CHERI ISA
Nicolas Joly, Saif ElSherei, Saar Amar – Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such

as C and C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited

vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit

extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag

table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI’s hybrid mode

could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as

it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization [15]. In this document, we will review only the memory

safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision ϳ, but some of the protections such as executable pointer sealing

is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations

requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-

allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

x Pure-capability vs hybrid mode

x Chosen heap allocator’s resilience

x Sub-allocation bounds compilation flag

x Linkage model (PC-relative, PLT, and per-function .captable)

x Extensions for additional protections on execute capabilities

x Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be

less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019

and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a

security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that

automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of

vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal

safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated

vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,

but this combination means CHERI looks very promising in its early stages.

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
23

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

CHERI SOFTWARE
COMPARTMENTALISATION

24

What is software compartmentalization?
• Fine-grained decomposition of a larger

software system into isolated
modules to constrain the impact of
faults or attacks

• Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

• Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target

25

CheriFreeRTOS components and the application execute
in compartments. CHERI contains an attack within
TCP/IP compartment, which access neither flash nor the
internals of the software update (OTA) compartment.

Software compartmentalization at scale

• Current CPUs limit:

• The number of compartments and rate of their creation/destruction

• The frequency of switching between them, especially as compartment count grows

• The nature and performance of memory sharing between compartments

• CHERI improves each of these – by at least one order of magnitude, and often two

26

...

CHERI contains attack within compartment,
preventing access to other data

A COMPLETE CHERI-ENABLED
SOFTWARE STACK

27

2021 desktop pilot study results
Developed:

• 6 million lines of C/C++ code compiled
for memory safety; modest dynamic testing

• Three compartmentalization
whiteboard case studies in Qt/KDE

Evaluation results:

• 0.026% LoC modification rate across
full corpus for memory safety

• 73.8% mitigation rate across full corpus,
using memory safety and
compartmentalization

Had to reverse engineer “de facto” threat
models for open-source software as not well
documented; key definition “required patches”

28

2024.05 Morello memory-safe desktop stack
>100MLoC of memory-safe C/C++ on a shipping
Arm Morello prototype board today:

● CheriBSD kernel with DRM + Panfrost drivers
● CheriBSD userspace with libraries and tools
● Plasma, KDE base applications including Dolphin,

Okular, Kate, and Konsole
● Library compartmentalization of all memory-safe

userlevel components
● Rich software development environment including

Clang/LLVM, GDB, Ghidra, …
● Roughly 10K memory-safe third-party software

packages, and 20K aarch64 packages
● Also includes memory-safe server software such as

gRPC, nginx, postgres, …

Some more complex, un-adapted applications (e.g.,
Chromium, OpenJDK) currently run in 64-bit Arm mode

29

CHERI and legacy applications side-by-side on Morello

30

Legacy 64-bit
Arm JVM

Legacy 64-bit
Arm

Chromium
browser

Memory-safe
PDF viewer

Memory-safe
desktop

environment

Memory-safe
terminal window
and commands

Memory-safe OS kernel and libraries

Memory-safe
OS kernel

Enables incremental application migration to memory safety

DEMONSTRATION

31

CONCLUSION

32

Ease of adoption compared to high-level languages
Language Approximate open-source LoC* Memory safe

C 10,317,799,775 ❌ → ✓ with CHERI

C++ 2,937,552,905 ❌ → ✓ with CHERI

Java 2,614,800,470 ✓

Rust 39,538,172 ✓

33

Worth pondering: In the past 12 months, the CHERI project has
adapted more lines of open-source code to memory safety than the

Rust project has created in its entire history.
* Synopsys Black Duck Open Hub: https://www.openhub.net/languages - Stats taken13 December 2023

https://www.openhub.net/languages

Could we achieve practical memory safety*
for multi-BLoC C/C++ software stacks within

4 years without a ground-up rewrite?

* There’s a very long discussion to have about what “memory-safe C/C++” means, but Microsoft’s
practical definition of ”deterministically mitigates security vulnerabilities” seems a good place to start.

Needed: Memory-safety standardization
• As part of the policy dialog around memory safety, a key question:

 “How can I ask for memory safety?”

• Procurement

• Regulation

• Contracts, liability, and insurance

• US National Academics of Sciences workshop in August 2024
engaged with this and other topics

• A whitepaper from Cambridge, SRI, Arm, Google, Microsoft, SCI, and
others is being circulated; broader publication late this year

• Advocates a technology-neutral, vendor-neutral approach

• Rust, CHERI, formal methods, compartmentalization, …

• Aim to kick off a standardization effort next year

35

It’s time to standardize principles and
practices for software memory safety
Robert N. M. Watson* †, John Baldwin††, Tony Chen‡, David Chisnall**, Jessica Clarke*,

Brooks Davis❡, Nathaniel Wesley Filardo‡, Brett Gutstein*, Graeme Jenkinson†, Ben Laurie*
†, Alfredo Mazzinghi†, Simon W. Moore† *, Peter G. Neumann❡, Alex Richardson#,

Alex Rebert#, Peter Sewell*, Laurence Tratt❡❡, Murali Vijayaraghavan#, Hugo Vincent##, and
Konrad Witaszczyk*

* University of Cambridge † Capabilities Limited ❡ SRI International
Google, Inc ‡ Microsoft, Inc ** SCI Semiconductor

†† Ararat River Consulting ❡❡ Kings College London ## Arm Limited

Draft version - 8 November 2024

Introduction 1
Background 2
Industrial best practices and market failure 5
Enabling business processes and market interventions 6

The memory-safety standardization gap 6
Audiences for memory-safety standardization 7
Goals for memory-safety standardization 8
Potential structures for one or more standards or documents 10

Adoption narratives and timelines 10
Potential events and interventions 11
Candidate timeline 12

Conclusion 14
Acknowledgements 14

Introduction
For at least two decades, endemic memory-safety vulnerabilities in software Trusted
Computing Bases (TCBs) have enabled the spread of malware and devastating targeted
attacks on critical infrastructure, national-security targets, companies, and individuals around
the world. Over the last two years, the information-technology industry has seen increasing
calls for the adoption of memory-safety technologies, framed as part of a broader initiative

1

Learning more about CHERI
• Visit cheri-cpu.org

• Read our article in the 2024 special issue of IEEE Security and
Privacy Magazine:

CHERI: Hardware-Enabled C/C++ Memory
Protection at Scale

• See our technical reports for great detail:

Introduction to CHERI

CHERI C/C++ Programming Guide

CHERI ISA Specification

• And see our research papers on everything from
microarchitectural implementations of tagged memory to the
implications of memory safety for the UNIX process model

36

MEMORY SAFETY

50 July/August 2024 Copublished by the IEEE Computer and Reliability Societies

This work is licensed under a Creative
Commons Attribution 4.0 License. For more information,

see https://creativecommons.org/licenses/by/4.0/

Robert N. M. Watson | University of Cambridge
David Chisnall | SCI Semiconductor
Jessica Clarke | University of Cambridge
Brooks Davis | SRI International
Nathaniel Wesley Filardo | Microsoft
Ben Laurie | Google
Simon W. Moore | University of Cambridge
Peter G. Neumann | SRI International
Alexander Richardson | Google
Peter Sewell , Konrad Witaszczyk , and Jonathan Woodruff | University of Cambridge

The memory-safe Capability Hardware Enhanced RISC Instructions (CHERI) C and C++ languages build
on architectural capabilities in the CHERI protection model. With the development of two industrial
CHERI-enabled processors, Arm’s Morello and Microsoft’s CHERIoT, CHERI may offer the fastest path to
widely deployed memory safety.

T he lack of memory safety in current software imple-
mentations has led to a long and catastrophic his-

tory of software vulnerabilities, from enabling the spread
of the Morris Internet Worm in 1988, to making up the
majority of critical security vulnerabilities in Android,
iOS, Windows, and numerous other contemporary
software systems. Many attempts have been made to
replace unsafe C and C++ with memory- and type-safe
languages, but these have made only limited inroads
in the most critical software trusted computing bases
(TCBs) due to the implied need for total software-stack
rewrites. Widely deployed exploit-mitigation mechanisms,

especially those based on random secrets, have simply
engaged in an expensive arms race with attackers, lead-
ing to successively more sophisticated attack approaches
that bypass those new defenses within a couple of years
of their deployment.1 This has left C and C++ operat-
ing system (OS) kernels, language runtimes, web brows-
ers, and server components in a nearly continuous state
of vulnerability, subject to unwinnable “patch and pray”
races with highly capable adversaries.

Capability Hardware Enhanced RISC Instructions
(CHERI), a hardware–software co-design project
started in 2010 by the University of Cambridge and
SRI International, has pursued an alternative strategy:
use adapted hardware, using memory-safe variants of
the C and C++ programming languages themselves.2

CHERI: Hardware-Enabled C/C++
Memory Protection at Scale

Digital Object Identifier 10.1109/MSEC.2024.3396701
Date of publication 21 June 2024; date of current version: 17 July 2024.

Robert N.M. Watson, David Chisnall, Jessica Clarke, Brooks Davis, Nathaniel
Wesley Filardo, Ben Laurie, Simon W. Moore, Peter G. Neumann, Alexander
Richardson, Peter Sewell, Konrad Witaszczyk, and Jonathan Woodruff.
CHERI: Hardware-Enabled C/C++ Memory Protection at Scale.
IEEE Security & Privacy, vol. 22, no. 04, pp. 50-61, July-August 2024.

Conclusion
• New architectural primitives enable fine-grained C/C++ memory

protection and scalable software compartmentalization

• Ideas portable across a range of architectures (Arm, RISC-V, …)
with full-scale software stacks running on them

• Prototype Arm Morello board shipped in 2022; 2.5 GHz high-
performance prototype fabricated at 7nm

• Open-source Microsoft CHERIoT microcontroller released in 2023;
to appear in FPGA and ASIC products over the next year

• Large and active community and software ecosystem!

http://www.cheri-cpu.org/
37

http://www.cheri-cpu.org/

38

