
Porting Software to CHERI
Cybersecurity by design - from research to industry

Cheltenham, 2024-11-12

Dr Graeme Jenkinson
Director of Applied Technology | Capabilities Limited

Today’s talk

What does it even mean to port software to CHERI?

What kinds of changes are required and how much effort does that involve?

And when I do all this what is achieved?

What does it even mean to port software to CHERI?

“porting is the process of adapting software for the purpose of achieving some form of

execution in a computing environment

… the term "port" is derived from the Latin portare, meaning "to carry". When code is

not compatible with a particular operating system [or language] or architecture, the code

must be "carried" [or "ported"] to the new system.”

- Wikipedia, Porting [Software Engineering]

Porting to Memory Safe languages

“70% of security vulnerabilities that Microsoft fixes and assigns a CVEs are due to

memory safety issues. This is despite mitigations including intense code review,

training, static analysis, and more.”

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/

Synopsys Black Duck Open Hub: https://www.openhub.net/languages?query=rust&sort=code

Programming

language

Approximate LoC

(Open Source projects)

Memory

safety

Memory safety with

CHERI

C 10,000,000,000

C++ 3,000,000,000

Rust 40,000,000

4

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://www.openhub.net/languages?query=rust&sort=code

Porting to CHERI

For this talk we are focussed on aspects of porting related to the CHERI architecture.

● And specifically porting legacy C/C++ codebases.

Design goals:

1. C programmers should be able to port existing C code bases with minimal effort.

2. Existing compiler infrastructure and optimisations should require only limited

changes.

3. Memory-safety errors that can lead to exploitable vulnerabilities should be

mitigated where possible.

Conventional architecture C/C++

unsigned long long

incrementInteger(unsigned long long num) {

return num + 1;

}

char*

incrementPointer(char* ptr) {

return ptr + 1;

}

Conventional C: Pointers

represented with simple

machine-word integers

incrementInteger(unsigned long long):

sub sp, sp, #16

str x0, [sp, 8]

ldr x0, [sp, 8]

add x0, x0, 1

add sp, sp, 16

ret

incrementPointer(char*):

sub sp, sp, #16

str x0, [sp, 8]

ldr x0, [sp, 8]

add x0, x0, 1

add sp, sp, 16

ret

https://godbolt.org/

https://godbolt.org/

incrementInteger(unsigned long long):

sub csp, csp, #16

str x0, [csp, #8]

ldr x8, [csp, #8]

add x0, x8, #1

add csp, csp, #16

ret c30

incrementPointer(char*):

sub csp, csp, #16

str c0, [csp, #0]

ldr c0, [csp, #0]

add c0, c0, #1

add csp, csp, #16

ret c30

What is CHERI C/C++?

unsigned long long

incrementInteger(unsigned long long num) {

return num + 1;

}

char*

incrementPointer(char* ptr) {

return ptr + 1;

}

“Basic idea is to represent

all C source-language

pointers with machine

capabilities, instead of

machine words”

“Pointer

arithmetic is

implemented

as arithmetic

over these

capabilities”

Representation of C language pointers with capabilities

struct DataOrder {
DataType type;
uint64_t value;
};

struct DataOrder {
DataType type;
uintptr_t value;
};

Modify type usage to

ensure pointer and

integer values are

distinct

What can programmers rely on and what they are required to ensure, for well defined CHERI C/C++?

In the presence of compiler optimisations, this can be complex

However, in practice most things that programmers are required to do is straightforward following a set of

common porting tasks:

See CHERI C/C++ programming guide: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

https://github.com/chromium-cheri/chromium/commit/a39b2fe1f1e2c4a84c68aa9045637f39fccd6f16#diff-

6d5f6348e30b4627ecd30be810c82c394d27e0877483789de3a497416f99a151R25

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://github.com/chromium-cheri/chromium/commit/a39b2fe1f1e2c4a84c68aa9045637f39fccd6f16
https://github.com/chromium-cheri/chromium/commit/a39b2fe1f1e2c4a84c68aa9045637f39fccd6f16

Example nginx web server

A web server accepts requests via HTTP or its
secure variant HTTPS. A user agent, commonly
a web browser, initiates communication by
making a request for a resource, and the server
responds with the content or an error.

nginx is currently most deployed web server
accounting for 34.1%; can also be deployed as
a reverse proxy, load balancer, mail proxy and
HTTP cache.

Approximately 140k lines of C code.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Web_Resource
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Load_balancer
https://en.wikipedia.org/wiki/HTTP_cache

How much effort does that involve?

● %SLoc changed in nginx port approximately

0.10%

● Consistent with other recent studies with

%SLoC changes typically 0.10%-0.25%

● Limitations:

○ The nginx port is fairly mature, but further issues

may arise with testing.

○ nginx memory allocators must be modified to

obtain the full benefits of CHERI spatial memory

protection.

○ Modifications to support sub-object bounds are

missing from these estimates.

Project

Total

SLoC

Changed

SLoC

% Changed

SLoC

Total files Changed

files

% Changed

files

nginx w/o tests 139804 118 0.10 337 20 5.90

Sliding scale of Effort

Non effort (0%)

Desktop stack - Plasma-

framework, Dolphin,

Minimal/small effort (0.10-

0.25%)

Web service stack - nginx,

Postgres, protobuf

High-effort (1-2%)

Operating system kernels -

FreeBSD

Language runtimes - v8

Javascript runtime

● Modern C/C++ usage across code base

● Use of C++ where templating reduces us of

integer/pointer conversions

● High-level applications, rather than low-level

software

● Modern C/C++ usage
● Misuse of standard types
● Complex memory allocators
● Internal Memory models

What is achieved?

Threat model:
● Remote code execution
● Private data disclosure
● Denial of service

Analytical study analysing historic
vulnerabilities

Approximately 28% of CWEs
assigned to nginx security
advisories relate to buffer
overwrites and overreads

Uncontrolled resource
consumption is the second
largest weakness

What is achieved?

CHERI protections have been shown to

mitigate ~60-70% of memory safety

vulnerabilities

● Memory safety issues accounting

for around 70% of the total

vulnerabilities

Mitigation rate of security vulnerabilities in

nginx with CHERI spatial/temporal

memory protection is approximately 46%

Applying compartmentalisation to nginx

modules improves the potential total

mitigation rate to 61%

Q&A

What does it even mean to port software to CHERI?

Porting to CHERI C/C++.

What kinds of changes are required and how much effort does that involve?

Typically in the region of 0.1-0.25%; larger for some classes of software.

And when I do all this what is achieved?

Deterministic mitigation of approximately 60-70% of memory safety issues.

	Slide 1: Porting Software to CHERI Cybersecurity by design - from research to industry Cheltenham, 2024-11-12
	Slide 2: Today’s talk
	Slide 3: What does it even mean to port software to CHERI?
	Slide 4: Porting to Memory Safe languages
	Slide 5: Porting to CHERI
	Slide 6: Conventional architecture C/C++
	Slide 7: What is CHERI C/C++?
	Slide 8: Representation of C language pointers with capabilities
	Slide 9: Example nginx web server
	Slide 10: How much effort does that involve?
	Slide 11: Sliding scale of Effort
	Slide 12: What is achieved?
	Slide 13: What is achieved?
	Slide 14: Q&A

