
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force

Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the

author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defe nse or the U.S. Government.

CHERI – Architectural memory safety and compartmentalisation

Full steam ahead to commercialization

Robert N. M. Watson, Simon W. Moore, Peter G. Neumann, Jonathan Woodruff
Hesham Almatary, Ricardo de Oliveira Almeida, Jonathan Anderson, Alasdair Armstrong, Rosie Baish, Peter Blandford-
Baker, John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brian Campbell, David Chisnall, Jessica Clarke,
Nirav Dave, Brooks Davis, Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Ivan Gomes-Ribeiro,

Khilan Gudka, Brett Gutstein, Angus Hammond, Graeme Jenkinson, Alexandre Joannou, Mark Johnston,
Robert Kovacsics, Ben Laurie, Marno van der Maas, A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi,

Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil, Kyndylan Nienhuis,
Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Alex Richardson, Michael Roe, Colin Rothwell,

Peter Rugg, Hassen Saidi, Peter Sewell, Thomas Sewell, Stacey Son, Ian Stark, Domagoj Stolfa, Andrew Turner,
Munraj Vadera, Konrad Witaszczyk, Hongyan Xia, Vadim Zaliva, and Bjoern A. Zeeb

University of Cambridge and SRI International

RISC-V Tokyo Summit

February 27, 2025

Approved for public release; distribution is unlimited.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform

Prototype, 105694.

This work was also supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research

Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249

(“MRC2”), HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), and HR001122C0110 (“ETC”) as part of the

DARPA CRASH, MRC, and SSITH research programs. The views, opinions, and/or findings contained in this report are

those of the authors and should not be interpreted as representing the official views or policies of the Department of

Defense or the U.S. Government.

We further acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108),

the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research

Cambridge, Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

2

Overview

• The CHERI architecture – Why and what

• The MIPS phase – Tags & compression

• The Arm Morello phase – Revocation & performance

• The RISC-V present – Simplification & implementation

Disclaimer: Real-life phases overlap and are technical contributions are more complicated.
Liberties have been taken with talk structure to make the story better.

3

An early experimental FPGA-

based CHERI tablet prototype

running the CheriBSD

operating system and

applications, Cambridge, 2013

THE CHERI ARCHITECTURE

4

Motivation – The memory safety crisis
“Buffer overflows have not objectively gone down in the last 40 years.

The impact of buffer overflows have if anything gone up.”

Ian Levy, Technical Director at NCSC

• Matt Miller (MS Response Center) @ BlueHat 2019:

• From 2006 to 2018, year after year,
70% MSFT CVEs are memory safety bugs.

• First place: spatial safety

• Fixed at native speed by CHERI

• Second place: temporal safety

• High-performance fix enabled by CHERI

• Other?

• CHERI compartmentalisation can limit fallout

Chromium Browser Safety
www.chromium.org/Home/chromium-security/memory-safety

“Out-of-bounds”

“Use-after-free”

CHERI: Unforgeable Bounded Pointers

It’s all in the title.

• “Unforgeable”

The architecture remembers whether a word is a pointer. This allows the flow of
pointers to be used for bona-fide privilege delegation.
This requires tagged memory.

• “Bounded”

Bounds and permissions metadata is added to pointers which cannot be expanded.
Pointer delegation can thus constrain a program to a subset of the address space.
This requires wider pointers.

• “Pointers”

CHERI capability pointers are used wherever pointers are used in C and C++
programs. This enables wide, immediate & natural adoption.

6

Called “Capabilities”
Why?

Ask Computer Science history…

CHERI Architecture: Bounded Pointers

• Capability pointers are double the width of a virtual address

• Bounds and permissions metadata are carried atomically with all

pointers and asserted on memory access

• New instructions are added to manipulate metadata (e.g. SetBounds)

7

Virtual address space
1
2
8
-b

it

ca
p
ab

ili
ty

v

1
-b

it

ta
g

permissions Bounds compressed relative to addresstype?

64-bit virtual address

Upper bound

Lower bound

Pointer address

Memory

allocation

CHERI Software: CHERI LLVM

• CHERI Clang/LLVM compiles C and C++ code to pure-capability executables.

• All memory operations explicitly use CHERI capability pointers.

• This communicates language-level memory information in the architecture to

be enforced at run-time.

8

struct timezone tz;

time_t get_unix_time(void) {

 struct timeval tv;

 gettimeofday(&tv, &tz);

 return tv.tv_sec;

}

get_unix_time_riscv:

 addi sp, sp, -32

 sd ra, 24(sp)

 addi a0, sp, 8

 auipc a1, %pcrel_hi(tz)

 addi a1, a1, %pcrel_lo(tz)

 auipc a2, %pcrel_hi(gettimeofday)

 jalr a2, %pcrel_lo(gettimeofday)

 ld a0, 8(sp)

 ld ra, 24(sp)

 addi sp, sp, 32

 ret

get_unix_time_cheririscv:

 caddi csp, csp, -32

 sc cra, 16(csp)

 scbndi ca0, csp, 16

 auipc ca1, %pcrel_hi(tz)

 lc ca1, %pcrel_lo(tz)(ca1)

 auipc ca2, %pcrel_hi(gettimeofday)

 clc ca2, %pcrel_lo(gettimeofday)(ca2)

 jalr cra, ca2

 ld a0, 0(csp)

 lc cra, 16(csp)

 caddi csp, csp, 32

 ret

1. Adjust stack address/capability

2. Save return address/capability

3. Create address/capability to local ‘tv’

4. Generate address/capability to global ‘tz’

5. Call gettimeofday()

6. Load return value from ‘tv’

7. Load return address/capability

8. Restore stack address/capability

9. Return

CHERI Software: CheriBSD
• Complete memory- and pointer-safe FreeBSD C/C++ kernel + userspace

Core OS kernel, filesystems, networking, device drivers, system libraries (ld-elf.so, libc, zlib),

system tools and daemons (echo, sh, openssl), applications (PostgreSQL, nginx, WebKit)

• Valid provenance, minimized privilege for pointers, implied VAs

• Userspace capabilities originate in kernel-provided roots via mmap(), etc.

• Compiler, allocators, run-time linker, etc., refine bounds and perms

9

From malloc

From mmap()

From rtld

From exec() or mmap()
Process Memory

From rtld

From exec() or mmap()

From rtld

From exec() or mmap()

CHERI Hardware

10

merged integer &

capability registers

= tag storage

L1 I-cache

DRAM controller Tag Controller

off-chip DRAM

capability arithmetic

capability load/store

capability exceptions

new registers:

PCC, DDC, CSRs

CHERI-Piccolo core

Changes to the core:
• capability arithmetic
• capability load/store operations with bounds checking
• extended exception model
• PC becomes a capability (PCC)
• default data capability (DDC)
• new control/status registers
• extended capability register file

Memory subsystem:
• AXI user-field added to transport tag bits & data width

doubled
• caches extended to include tags

DRAM changes:
• New tag controller emulates tagged memory by

maintaining a table of tag bits in the top of DRAM

L1 D-cache

Example: CHERI-Piccolo

microcontroller

CHERI – THE MIPS ERA

11

CHERI-MIPS – Initial Compiler Support

12

Initially used explicit capability annotations.

Now we use pure-capability ABI.

CHERI-MIPS – Tagged memory

13

Tag Compression

• 2-level tag table

• Each bit in the root level indicates all zeros in a

leaf group

• Reduces tag cache footprint

• Amplifies cache capacity

64 bytes

Tags for a

page of data

1 bit per page of data: 0 for no tags set

DRAM Traffic Overhead
Note: MiBench overheads with compression are approximately zero

What we learned

Properties:

• Larger allocations have greater alignment requirements.
<= 4096 byte-accurate for CHERI-128 and <= 512 for CHERI-64

• Granularity is the only alignment requirement.
Allocations can span any alignment boundary.

• Metadata bits do not change with pointer arithmetic.
Common case is simpler.

Representability check is faster than full bounds check.

14

CHERI-MIPS – Capability Compression

What we learned

Performance vs. CHERI-256 baseline for

Spec2006 (SP) and JavaScript (JS) benchmarks.

CHERI – THE ARM MORELLO ERA

15

Arm Morello - Overview

• $225M government, academia, and industrial
research program led by UK Research and
Innovation (UKRI)

• Announced partners: Arm, Google, Microsoft

• 15+ UK universities with research grants

• 70+ funded business incubation projects

• Baseline for design: Neoverse N1 core

• 2.5GHz quad-core, superscalar

• Implements CHERI extensions

• Runs full CHERI-enabled software stacks

• A prototype, but a very powerful one!

• Roughly a thousand chips manufactured for use
by research + development labs

16

Arm Morello – Temporal Safety (1)

• Insight: CHERI enables temporal
safety for C by:

• Allowing pointers to be identified in
memory

• Preventing capability pointers from being
fabricated or enlarged

• Enabling references to be reliably revoked

• General strategy:

1. Put freed memory in quarantine

2. Mark memory free

3. Sweep memory and delete capabilities
that point to freed memory

17

What we learned

Arm Morello – CheriBSD Full Desktop

18

Roughly 30MLoC on a shipping Arm Morello
board today, with memory-safe:

• CheriBSD kernel with DRM + Panfrost drivers

• CheriBSD userspace with libraries, OpenSSH, ...

• OpenGL, Wayland display server

• Plasma, KDE base applications including Dolphin,
Okular, Konsole.

• Aarch64 CHERI/Morello-aware GDB debugger

• 9K CheriABI packages, 20K aarch64 (“legacy”)
packages; notable exclusions for language runtimes

• Temporal safety by default

• Library compartmentalisation

CHERI – THE RISC-V ERA

19

CHERI-RISC-V – Simplifications

20

Sealing

“Otype” Sealing

• Dedicated bits for type (3-18)

+ Any capability can be sealed with any type

- Limited number of types

- Extra instructions/permissions to control

type delegation

- Need a type manager to allocate

Subset Sealing

• ”Unseal” by rebuilding from a superset capability

Reconstruct with BuildCap

Probably add a dedicated instruction

+ Type space scales with virtual memory

+ Use single ”sealed” bit

- Objects of a type must be in the same contiguous

memory (Can virtualize with indirection)

Still validating that Subset sealing is sufficient.

• Morello had 4

• CHERI-RISC-V prototype had 5

• Capability Read

• Capability Write

• Capability Read Generation

• Capability Dirty

Trying to reduce to 2 bits (4 states)

1. Cap writeable, read gen 0

2. Cap writeable, read gen 1

3. Trap on capability write,
Strip tag on cap read

4. Auto “dirtyable” to cap writeable,
read gen=current

21

CHERI-RISC-V – Simplifications

PTE Bits

22

CHERI-RISC-V – Performance
Predicted average

overhead of ~5%;

current best average

overhead of ~6% on

CHERI Toooba. Still

improving code

generation; should

improve further with

ratified CHERI-RISC-V

and Codasip compiler

work.

Fundamental overhead is cache pressure.

This is similar across Arm’s Morello and

RISC-V Toooba; this gives confidence that

Toooba is an appropriate platform for

further research.

23

CHERI-RISC-V – Implementations
Cores from Cambridge in Bluespec

24

CHERI-RISC-V – Implementations
CHERIoT

• Open source

• Developed by Microsoft

• Rv32 + custom CHERI ISA fork

• Includes embedded operating

system with sophisticated

hardware/software guarantees

• Spatial safety

• Hardware-enabled strict

temporal safety

• Compartmentalisation without

associative tables

• Several paths to

commercialisation

• Rv64, full rva22 core with pre-

ratification CHERI extension

• Dual-issue, in-order

• Large team ensuring mature

software support at launch

25

CHERI-RISC-V – Implementations
Codasp 700 series

Conclusions

Thanks to sponsors: DARPA, ARM, Google, EPSRC, ESRC, HEIF, Isaac Newton Trust, Thales E-Security, HP Labs

26 Jonathan.Woodruff@cl.cam.ac.uk

Dept. Computer Science & Technology

https://www.cl.cam.ac.uk/

research/security/ctsrd/

• CHERI is about to be deployed in specialized

applications.

• Software ecosystem is well-developed and maturing fast.

• If CHERI accelerates general-purpose computing, it will

move into the mainstream.

• Questions?

Low-cost compartments?

Microarchitectural knowledge?

BACKUP SLIDES

27

What is software compartmentalization?

• Fine-grained decomposition of a larger
software system into isolated
modules to constrain the impact of
faults or attacks

• Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

• Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target

28

CheriFreeRTOS components and the application execute

in compartments. CHERI contains an attack within

TCP/IP compartment, which access neither flash nor the

internals of the software update (OTA) compartment.

CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities,

combined with a constrained non-monotonic domain-transition mechanism
29

Protection

domain A

Protection

Domain B

Flexible set of

shared resources

	Slide 1: CHERI – Architectural memory safety and compartmentalisation Full steam ahead to commercialization
	Slide 2
	Slide 3: Overview
	Slide 4: The CHERI ARCHITECTURE
	Slide 5: Motivation – The memory safety crisis
	Slide 6: CHERI: Unforgeable Bounded Pointers
	Slide 7: CHERI Architecture: Bounded Pointers
	Slide 8: CHERI Software: CHERI LLVM
	Slide 9: CHERI Software: CheriBSD
	Slide 10: CHERI Hardware
	Slide 11: CHERI – The MIPS ERA
	Slide 12: CHERI-MIPS – Initial Compiler Support
	Slide 13: CHERI-MIPS – Tagged memory
	Slide 14
	Slide 15: CHERI – The ARM Morello ERA
	Slide 16: Arm Morello - Overview
	Slide 17: Arm Morello – Temporal Safety (1)
	Slide 18: Arm Morello – CheriBSD Full Desktop
	Slide 19: CHERI – The RISC-V ERA
	Slide 20: CHERI-RISC-V – Simplifications
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Conclusions
	Slide 27: Backup Slides
	Slide 28: What is software compartmentalization?
	Slide 29: CHERI-based compartmentalization

