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Overview

• The CHERI architecture – Why and what

• The MIPS phase – Tags & compression

• The Arm Morello phase – Revocation & performance

• The RISC-V present – Simplification & implementation

Disclaimer: Real-life phases overlap and are technical contributions are more complicated.
Liberties have been taken with talk structure to make the story better.
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An early experimental FPGA-

based CHERI tablet prototype 

running the CheriBSD 

operating system and 

applications, Cambridge, 2013



THE CHERI ARCHITECTURE
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Motivation – The memory safety crisis
“Buffer overflows have not objectively gone down in the last 40 years.

The impact of buffer overflows have if anything gone up.”

Ian Levy, Technical Director at NCSC 

• Matt Miller (MS Response Center) @ BlueHat 2019:

• From 2006 to 2018, year after year,
70% MSFT CVEs are memory safety bugs.

• First place: spatial safety

• Fixed at native speed by CHERI

• Second place: temporal safety

• High-performance fix enabled by CHERI

• Other?

• CHERI compartmentalisation can limit fallout

Chromium Browser Safety
www.chromium.org/Home/chromium-security/memory-safety

“Out-of-bounds”

“Use-after-free”



CHERI: Unforgeable Bounded Pointers

It’s all in the title.

• “Unforgeable”

The architecture remembers whether a word is a pointer. This allows the flow of 
pointers to be used for bona-fide privilege delegation. 
This requires tagged memory.

• “Bounded”

Bounds and permissions metadata is added to pointers which cannot be expanded. 
Pointer delegation can thus constrain a program to a subset of the address space. 
This requires wider pointers.

• “Pointers”

CHERI capability pointers are used wherever pointers are used in C and C++ 
programs. This enables wide, immediate & natural adoption.
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Called “Capabilities”
Why?

Ask Computer Science history…



CHERI Architecture: Bounded Pointers

• Capability pointers are double the width of a virtual address

• Bounds and permissions metadata are carried atomically with all 

pointers and asserted on memory access

• New instructions are added to manipulate metadata (e.g. SetBounds)
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CHERI Software: CHERI LLVM

• CHERI Clang/LLVM compiles C and C++ code to pure-capability executables.

• All memory operations explicitly use CHERI capability pointers.

• This communicates language-level memory information in the architecture to 

be enforced at run-time. 
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struct timezone tz;

time_t get_unix_time(void) {

 struct timeval tv; 

 gettimeofday(&tv, &tz);

 return tv.tv_sec;

}

get_unix_time_riscv:

 addi  sp, sp, -32

 sd  ra, 24(sp)

 addi  a0, sp, 8

 auipc a1, %pcrel_hi(tz)

 addi  a1, a1, %pcrel_lo(tz)

 auipc a2, %pcrel_hi(gettimeofday)

 jalr  a2, %pcrel_lo(gettimeofday)

 

 ld  a0, 8(sp)

 ld  ra, 24(sp)

 addi  sp, sp, 32

 ret

get_unix_time_cheririscv:

 caddi csp, csp, -32

 sc  cra, 16(csp)

 scbndi ca0, csp, 16

 auipc ca1, %pcrel_hi(tz)

 lc  ca1, %pcrel_lo(tz)(ca1)

 auipc ca2, %pcrel_hi(gettimeofday)

 clc  ca2, %pcrel_lo(gettimeofday)(ca2)

 jalr  cra, ca2

 ld  a0, 0(csp)

 lc  cra, 16(csp)

 caddi csp, csp, 32

 ret

1. Adjust stack address/capability

2. Save return address/capability

3. Create address/capability to local ‘tv’

4. Generate address/capability to global ‘tz’

5. Call gettimeofday()

6. Load return value from ‘tv’

7. Load return address/capability

8. Restore stack address/capability

9. Return



CHERI Software: CheriBSD
• Complete memory- and pointer-safe FreeBSD C/C++ kernel + userspace

Core OS kernel, filesystems, networking, device drivers, system libraries (ld-elf.so, libc, zlib), 

system tools and daemons (echo, sh, openssl), applications (PostgreSQL, nginx, WebKit)

• Valid provenance, minimized privilege for pointers, implied VAs

• Userspace capabilities originate in kernel-provided roots via mmap(), etc.

• Compiler, allocators, run-time linker, etc., refine bounds and perms
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From malloc

From mmap()

From rtld

From exec() or mmap()
Process Memory

From rtld

From exec() or mmap()

From rtld

From exec() or mmap()



CHERI Hardware
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merged integer & 

capability registers

= tag storage

L1 I-cache

DRAM controller Tag Controller

off-chip DRAM

capability arithmetic

capability load/store

capability exceptions

new registers:

PCC, DDC, CSRs

CHERI-Piccolo core

Changes to the core:
• capability arithmetic
• capability load/store operations with bounds checking
• extended exception model 
• PC becomes a capability (PCC)
• default data capability (DDC)
• new control/status registers
• extended capability register file

Memory subsystem:
• AXI user-field added to transport tag bits & data width 

doubled
• caches extended to include tags

DRAM changes:
• New tag controller emulates tagged memory by 

maintaining a table of tag bits in the top of DRAM

L1 D-cache

Example: CHERI-Piccolo 

microcontroller



CHERI – THE MIPS ERA
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CHERI-MIPS – Initial Compiler Support
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Initially used explicit capability annotations.

Now we use pure-capability ABI.



CHERI-MIPS – Tagged memory
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Tag Compression

• 2-level tag table

• Each bit in the root level indicates all zeros in a 

leaf group

• Reduces tag cache footprint

• Amplifies cache capacity

64 bytes

Tags for a

page of data

1 bit per page of data: 0 for no tags set

DRAM Traffic Overhead
Note: MiBench overheads with compression are approximately zero

What we learned



Properties:

• Larger allocations have greater alignment requirements.
<= 4096 byte-accurate for CHERI-128 and <= 512 for CHERI-64

• Granularity is the only alignment requirement.
Allocations can span any alignment boundary.

• Metadata bits do not change with pointer arithmetic.
Common case is simpler.

Representability check is faster than full bounds check.
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CHERI-MIPS – Capability Compression

What we learned

Performance vs. CHERI-256 baseline for 

Spec2006 (SP) and JavaScript (JS) benchmarks.



CHERI – THE ARM MORELLO ERA
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Arm Morello - Overview

• $225M government, academia, and industrial 
research program led by UK Research and 
Innovation (UKRI)

• Announced partners: Arm, Google, Microsoft

• 15+ UK universities with research grants

• 70+ funded business incubation projects

• Baseline for design: Neoverse N1 core

• 2.5GHz quad-core, superscalar

• Implements CHERI extensions

• Runs full CHERI-enabled software stacks

• A prototype, but a very powerful one!

• Roughly a thousand chips manufactured for use 
by research + development labs
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Arm Morello – Temporal Safety (1)

• Insight: CHERI enables temporal
safety for C by:

• Allowing pointers to be identified in 
memory

• Preventing capability pointers from being 
fabricated or enlarged

• Enabling references to be reliably revoked

• General strategy:

1. Put freed memory in quarantine

2. Mark memory free

3. Sweep memory and delete capabilities 
that point to freed memory
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What we learned



Arm Morello – CheriBSD Full Desktop

18

Roughly 30MLoC on a shipping Arm Morello 
board today, with memory-safe:

• CheriBSD kernel with DRM + Panfrost drivers

• CheriBSD userspace with libraries, OpenSSH, ...

• OpenGL, Wayland display server

• Plasma, KDE base applications including Dolphin, 
Okular, Konsole.

• Aarch64 CHERI/Morello-aware GDB debugger

• 9K CheriABI packages, 20K aarch64 (“legacy”) 
packages; notable exclusions for language runtimes

• Temporal safety by default

• Library compartmentalisation



CHERI – THE RISC-V ERA
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CHERI-RISC-V – Simplifications
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Sealing

“Otype” Sealing

• Dedicated bits for type (3-18)

+ Any capability can be sealed with any type

- Limited number of types

- Extra instructions/permissions to control 

type delegation

- Need a type manager to allocate

 

Subset Sealing

• ”Unseal” by rebuilding from a superset capability

Reconstruct with BuildCap

Probably add a dedicated instruction

+ Type space scales with virtual memory

+ Use single ”sealed” bit

- Objects of a type must be in the same contiguous 

memory (Can virtualize with indirection) 

Still validating that Subset sealing is sufficient.



• Morello had 4

• CHERI-RISC-V prototype had 5

• Capability Read

• Capability Write

• Capability Read Generation

• Capability Dirty

Trying to reduce to 2 bits (4 states)

1. Cap writeable, read gen 0

2. Cap writeable, read gen 1

3. Trap on capability write,
Strip tag on cap read

4. Auto “dirtyable” to cap writeable, 
read gen=current
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CHERI-RISC-V – Simplifications

PTE Bits
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CHERI-RISC-V – Performance
Predicted average 

overhead of ~5%; 

current best average 

overhead of ~6% on 

CHERI Toooba. Still 

improving code 

generation; should 

improve further with 

ratified CHERI-RISC-V 

and Codasip compiler 

work.

Fundamental overhead is cache pressure. 

This is similar across Arm’s Morello and 

RISC-V Toooba; this gives confidence that 

Toooba is an appropriate platform for 

further research.
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CHERI-RISC-V – Implementations
Cores from Cambridge in Bluespec
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CHERI-RISC-V – Implementations
CHERIoT

• Open source

• Developed by Microsoft

• Rv32 + custom CHERI ISA fork

• Includes embedded operating 

system with sophisticated 

hardware/software guarantees

• Spatial safety

• Hardware-enabled strict 

temporal safety

• Compartmentalisation without 

associative tables

• Several paths to 

commercialisation



• Rv64, full rva22 core with pre-

ratification CHERI extension

• Dual-issue, in-order

• Large team ensuring mature 

software support at launch
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CHERI-RISC-V – Implementations
Codasp 700 series



Conclusions

Thanks to sponsors: DARPA, ARM, Google, EPSRC, ESRC, HEIF, Isaac Newton Trust, Thales E-Security, HP Labs

26 Jonathan.Woodruff@cl.cam.ac.uk

Dept. Computer Science & Technology

https://www.cl.cam.ac.uk/ 

research/security/ctsrd/

• CHERI is about to be deployed in specialized 

applications.

• Software ecosystem is well-developed and maturing fast.

• If CHERI accelerates general-purpose computing, it will 

move into the mainstream.

• Questions?

Low-cost compartments? 

Microarchitectural knowledge?



BACKUP SLIDES
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What is software compartmentalization?

• Fine-grained decomposition of a larger 
software system into isolated 
modules to constrain the impact of 
faults or attacks

• Goals is to minimize privileges 
yielded by a successful attack, and 
to limit further attack surfaces

• Usefully thought about as a graph of 
interconnected components, 
where the attacker’s goal is to 
compromise nodes of the graph 
providing a route from a point of entry 
to a specific target
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CheriFreeRTOS components and the application execute 

in compartments. CHERI contains an attack within 

TCP/IP compartment, which access neither flash nor the 

internals of the software update (OTA) compartment.



CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities, 

combined with a constrained non-monotonic domain-transition mechanism
29

Protection 

domain A

Protection 

Domain B

Flexible set of 

shared resources
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