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Challenge: Memory Safety

• “Buffer overflows have not objectively gone down in the last 40 years.  
The impact of buffer overflows have if anything gone up.”
Ian Levy, Technical Director at NCSC, 2022

• Matt Miller from MS Response Center @ BlueHat 2019:
• From 2006 to 2018, year after year, 70% MSFT CVEs are memory safety 

bugs
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Example – Chromium Browser Safety

“70% of our serious security bugs are memory safety problems”
www.chromium.org/Home/chromium-security/memory-safety
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How can we do better?

1. Use memory safe languages like Rust?
• Great for new code

• Impractical for the vast body of legacy code?

2. Our approach: make C/C++ and other languages memory safe 
using CHERI capabilities
• Recompile your code for a CHERI enhanced processor to get memory safety

• Can also make unsafe Rust much safer!
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CHERI – A Modern Capability Architecture
CHERI = Capability Hardware Enhanced RISC Instructions
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CHERI 128-bit capabilities

• Capabilities extend integer memory addresses

• Metadata (bounds, permissions, …) control how they may be used

• Guarded manipulation controls how capabilities may be manipulated; 
e.g., provenance validity and monotonicity

• Tags protect capability integrity/derivation in registers + memory
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Capability-extended register file + tagged memory

• 64-bit general-purpose registers (GPRs) extended with 64 bits of metadata and a 1-bit validity tag

• Program counter (PC) is extended to be the program-counter capability ($PCC)

• Tagged memory protects capability-sized and -aligned words in DRAM by adding a 1-bit validity tag

• New instructions are used to explicitly load, store, inspect, and manipulate capability values

• Existing encodings are reused for capability-relative dereferences when in a suitable mode

• Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions

• System mechanisms are extended (e.g., capability-instruction enable control register, new PTE 
permissions, new exception codes, exception stack pointers + vectors become capabilities, etc.)
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CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers 
via valid transformations; invalid pointers cannot be used

• Bounds prevent pointers from being manipulated to access the wrong object

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection, 
but also higher-level policies such as scalable software compartmentalisation
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CHERI-based compartmentalization (1/4)

• Building on CHERI memory safety, link multiple instances of code and 
data within a single address space
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CHERI-based compartmentalization (2/4)

• Spatial safety, provenance validity, and monotonicity enable 
compartment isolation
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CHERI-based compartmentalization (3/4)

• Domain transition uses exception-free, non-monotonic domain-
transition mechanism based on capability-register jumps

16

Protection domain A

Protection Domain B



CHERI-based compartmentalization (4/4)

• Efficient sharing is possible using capabilities to shared memory, with rights 
constrained by capability bounds/permissions. Even TLB entries are shared.
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Software compartmentalisation at scale

• Current CPUs limit:
• The number of compartments and rate of their creation/destruction
• The frequency of switching between them, especially as compartment count grows
• The nature and performance of memory sharing between compartments

• CHERI is intended to improve each of these
  – by at least an order of magnitude
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Conclusions

• CHERI provides the hardware with more semantic knowledge of what 
the programmer intended
• Allows deterministic mitigation of memory safety

vulnerabilities

• Efficient pointer integrity and bounds checking
• Eliminates buffer overflow/over-read attacks (finally!)

• Provide scalable, efficient compartmentalisation
• Allows the principle of least privilege to be exploited to

mitigate known and unknown attacks
• Large performance improvement over process-based compartmentalisation

• Working with industry and the open-source
community to deploy the technology
• Also working with Government agencies and standardisation bodies
• Thanks to sponsors: Innovate UK, DARPA, ARM, Codasip, Google, EPSRC, ESRC, HEIF, Isaac 

Newton Trust, Thales E-Security, HP Labs
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