
Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann, Brooks Davis

Hesham Almatary, Ricardo de Oliveira Almeida, Jonathan Anderson, Alasdair Armstrong, Rosie Baish, Peter Blandford-Baker,
John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brian Campbell, David Chisnall, Jessica Clarke, Nirav Dave,

Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Ivan Gomes-Ribeiro, Khilan Gudka, Brett Gutstein,
Angus Hammond, Graeme Jenkinson, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, Jessica Man,

A. Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala,
George Neville-Neil, Kyndylan Nienhuis, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro,

Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi, Thomas Sewell, Stacey Son, Ian Stark, Domagoj Stolfa,
Andrew Turner, Munraj Vadera, Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia, Vadim Zaliva, and Bjoern A. Zeeb

Introduction to CHERI

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”), HR0011-18-
C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), HR001122C0110 (“ETC”), and HR001122S0003 (“MTSS”). The views, opinions, and/or findings contained in
this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

Approved for public release; distribution is unlimited.

The original CHERI R&D was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”), HR0011-18-C-0016
(“ECATS”), FA8650-18-C-7809 (“CIFV”), HR001122C0110 (“ETC”), HR001123C0031 (“MTSS”), and FA8750-24-C-B047 (“DEC”) as part of the
DARPA I2O CRASH, I2O MRC, MTO SSITH, and I2O CPM research programs. The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S.
Government.

Arm’s Morello and significant recent developments in the CHERI software and hardware stacks were supported in part by the Innovate UK
project 105694 (“Digital Security by Design (DSbD) Technology Platform Prototype” and Innovate UK project 10027440 (“Developing and
Evaluating an Open-Source Desktop for Arm Morello”).

We further acknowledge EPSRC REMS (EP/K008528/1), EPSRC CHaOS (EP/V000292/1), ERC ELVER (789108), the Isaac Newton Trust, the UK
Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge, Arm Limited, Google, Google DeepMind, HP
Enterprise, and the Gates Cambridge Trust.

2

Challenge: Memory Safety

• “Buffer overflows have not objectively gone down in the last 40 years.
The impact of buffer overflows have if anything gone up.”
Ian Levy, Technical Director at NCSC, 2022

• Matt Miller from MS Response Center @ BlueHat 2019:
• From 2006 to 2018, year after year, 70% MSFT CVEs are memory safety

bugs

3

Example – Chromium Browser Safety

“70% of our serious security bugs are memory safety problems”
www.chromium.org/Home/chromium-security/memory-safety

5

so
urce: h

ttp
://xkcd

.co
m

/1354
/

HeartBleed

Example

6

so
urce: h

ttp
://xkcd

.co
m

/1354
/

HeartBleed

7

so
urce: h

ttp
://xkcd

.co
m

/1354
/

How can we do better?

1. Use memory safe languages like Rust?
• Great for new code

• Impractical for the vast body of legacy code?

2. Our approach: make C/C++ and other languages memory safe
using CHERI capabilities
• Recompile your code for a CHERI enhanced processor to get memory safety

• Can also make unsafe Rust much safer!

8

CHERI – A Modern Capability Architecture
CHERI = Capability Hardware Enhanced RISC Instructions

le
ss

o
n

s

lesso
n

s

CHERI hardware timeline (abstracted!)

10

CHERI-MIPS
S

tan
d

ard
isatio

n

Codasip
CHERI-RISC-V

UoC CHERI-RISC-V
& Capabilities Limited

CHERIoT
Microsoft, SCI Semi..

CHERI-ARM (Morello)

Commercial products

Open-source designs
Leading to products?

Commercial CHERI-ARM?

Research DSbD: evaluate, refine, transition Products

CHERI 128-bit capabilities

• Capabilities extend integer memory addresses

• Metadata (bounds, permissions, …) control how they may be used

• Guarded manipulation controls how capabilities may be manipulated;
e.g., provenance validity and monotonicity

• Tags protect capability integrity/derivation in registers + memory

11

Virtual address space

12
8-

b
it

ca
p

ab
ili

ty

v

1-
b

it
ta

g

permissions bounds compressed relative to address

64-bit virtual address

Upper bound

Lower bound

Pointer
address

Memory
allocation

Hardware
guarantees
correct usage

Capability-extended register file + tagged memory

• 64-bit general-purpose registers (GPRs) extended with 64 bits of metadata and a 1-bit validity tag

• Program counter (PC) is extended to be the program-counter capability ($PCC)

• Tagged memory protects capability-sized and -aligned words in DRAM by adding a 1-bit validity tag

• New instructions are used to explicitly load, store, inspect, and manipulate capability values

• Existing encodings are reused for capability-relative dereferences when in a suitable mode

• Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions

• System mechanisms are extended (e.g., capability-instruction enable control register, new PTE
permissions, new exception codes, exception stack pointers + vectors become capabilities, etc.)

12

General-purpose register file (GPRs)

$ra

$a1

$a0

$pc

vEPCC

vDDC

Control and
status registers

(CSRs)

Physical memory

dd

vCapability

Capability width

-

1-bit tags
added to

DRAM

$pcc v

$c4

$c3

$c31 v

-

v

GPRs extended to 129 bits

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers
via valid transformations; invalid pointers cannot be used

• Bounds prevent pointers from being manipulated to access the wrong object

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection,
but also higher-level policies such as scalable software compartmentalisation

13

Globals

Data

Heap Stack

Code

Control flow

Monotonicity Permissions
Integrity and provenance

validity
Bounds

CHERI-based compartmentalization (1/4)

• Building on CHERI memory safety, link multiple instances of code and
data within a single address space

14

CHERI-based compartmentalization (2/4)

• Spatial safety, provenance validity, and monotonicity enable
compartment isolation

15

Protection domain A

CHERI-based compartmentalization (3/4)

• Domain transition uses exception-free, non-monotonic domain-
transition mechanism based on capability-register jumps

16

Protection domain A

Protection Domain B

CHERI-based compartmentalization (4/4)

• Efficient sharing is possible using capabilities to shared memory, with rights
constrained by capability bounds/permissions. Even TLB entries are shared.

17

Protection domain A

Protection Domain B

Flexible set of shared
resources

Software compartmentalisation at scale

• Current CPUs limit:
• The number of compartments and rate of their creation/destruction
• The frequency of switching between them, especially as compartment count grows
• The nature and performance of memory sharing between compartments

• CHERI is intended to improve each of these
 – by at least an order of magnitude

18

...

CHERI contains attack within compartment,
preventing access to other data

Conclusions

• CHERI provides the hardware with more semantic knowledge of what
the programmer intended
• Allows deterministic mitigation of memory safety

vulnerabilities

• Efficient pointer integrity and bounds checking
• Eliminates buffer overflow/over-read attacks (finally!)

• Provide scalable, efficient compartmentalisation
• Allows the principle of least privilege to be exploited to

mitigate known and unknown attacks
• Large performance improvement over process-based compartmentalisation

• Working with industry and the open-source
community to deploy the technology
• Also working with Government agencies and standardisation bodies
• Thanks to sponsors: Innovate UK, DARPA, ARM, Codasip, Google, EPSRC, ESRC, HEIF, Isaac

Newton Trust, Thales E-Security, HP Labs

19

https://www.cl.cam.ac.uk/
research/security/ctsrd/

Simon.Moore@cl.cam.ac.uk
Dept. Computer Science & Technology
University of Cambridge

How do we sell security
rather than performance?

	Slide 1: Introduction to CHERI
	Slide 2:
	Slide 3: Challenge: Memory Safety
	Slide 4: Example – Chromium Browser Safety
	Slide 5
	Slide 6
	Slide 7
	Slide 8: How can we do better?
	Slide 9: CHERI – A Modern Capability Architecture
	Slide 10: CHERI hardware timeline (abstracted!)
	Slide 11: CHERI 128-bit capabilities
	Slide 12: Capability-extended register file + tagged memory
	Slide 13: CHERI enforces protection semantics for pointers
	Slide 14: CHERI-based compartmentalization (1/4)
	Slide 15: CHERI-based compartmentalization (2/4)
	Slide 16: CHERI-based compartmentalization (3/4)
	Slide 17: CHERI-based compartmentalization (4/4)
	Slide 18: Software compartmentalisation at scale
	Slide 19: Conclusions

