
CHERI-RISC-V 

Standardisation

09 April 2025

Memory safety for all, from ear-buds to servers

Tariq Kurd
Chief Architect, Codasip



09 April 2025

RISC-V is about to have 7 base architectures

⬢ New unratified CHERI base architectures are:

⬢ RV64CH – 32 registers, 64-bit, 128-bit capabilities

⬢ RV32CH – 32 registers, 32-bit, 64-bit capabilities

⬢ Current ratified base architectures are:

⬢ RV64I  – 32 registers, 64-bit

⬢ RV64E – 16 registers, 64-bit

⬢ RV32I  – 32 registers, 32-bit

⬢ RV32E – 16 registers, 32-bit

⬢ The other unratified base architecture is:

⬢ RV128I – 32 registers, 128-bit



Documentation status

⬢ The current CHERI spec 0.9.5 on GitHub is 278 pages

⬢ ~ 170 are instruction pages

⬢ All the features are in one document

⬢ This have been split into different pieces

⬢ Unprivileged architecture – RV64CH, RV32CH

⬢ Privileged architecture – Smcheri, Sscheri

⬢ Debug architecture – Sdcheri

⬢ All are currently under ARC review

09 April 2025

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


09 April 2025

Being a base architecture is useful

⬢ It means that we can choose what we import from RV64I/RV32I.

⬢ In particular we can ditch the fairly useless double precision floating 
point load/store encodings and have useful ones instead.

RV32I/ 

RV64I Description

RV32CH/ 

RV64CH

Description

C.FSD Store double via rs1 C.SC Store capability via cs1

C.FLD Load double via rs1 C.LC Load capability via cs1

C.FSDSP Store double via stack 

pointer

C.SCSP Store capability via 

stack pointer

C.FLDSP Load double via stack 

pointer

C.LCSP Load capability via 

stack pointer



Unprivileged Architecture RV32CH/RV64CH

⬢ This is the definition of the pure-capability machine

⬢ 32 CLEN-wide registers (extended from XLEN-wide)

⬢ All CHERI instructions are listed in the base architecture

⬢ E.g. load/store capability LC/SC

⬢ Capability manipulation

⬢ Application Code programmer’s view

⬢ No hybrid features

⬢ DDC, mode switch

09 April 2025

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


09 April 2025

Privileged Archiecture Smcheri/Sscheri

⬢ This includes all pure capability machine CSRs visible from M or S-
mode

⬢ E.g. extra bits in Xenvcfg, mseccfg

⬢ Virtual memory changes

⬢ PTE.CW – to restrict capability writes

⬢ PTE.UCRG – should this be a separate extension?

⬢ CHERI exception types and handling

⬢ Usage of Xtval2 for example



What else?

⬢ The encoding format is now in an appendix

⬢ They’re different for CHERIoT so need to be optional

⬢ We need to describe the instructions without the format

⬢ Hybrid mode is an option on the base RISC-V architecture

⬢ Predicated on implementing RH32CH/RV64CH

⬢ The debug specification needs updating

⬢ CHERI does affect debug mode

⬢ Sdcheri will be pushed to the debug specification

09 April 2025

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


09 April 2025

Thanks to the contributors

⬢ Writing the RISC-V spec ⬢ Reviewing the RISC-V spec

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


THANK YOU

https://creativecommons.org/licenses/by-sa/4.0/

This work © 2025 by CHERI Alliance is licensed under CC BY-SA 4.0 (Creative Commons 

Attribution-ShareAlike 4.0 International) – https://creativecommons.org/licenses/by-sa/4.0/

Contact Tariq.Kurd@codasip.com

Web www.codasip.com

09 April 2025

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:Tariq.Kurd@codasip.com
http://www.codasip.com/

	Slide 1: CHERI-RISC-V Standardisation
	Slide 2: RISC-V is about to have 7 base architectures
	Slide 3: Documentation status
	Slide 4: Being a base architecture is useful
	Slide 5: Unprivileged Architecture RV32CH/RV64CH
	Slide 6: Privileged Archiecture Smcheri/Sscheri
	Slide 7: What else?
	Slide 8: Thanks to the contributors
	Slide 9

