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System-level requirements for CHERI
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⬢ A system must maintain a tag bit for every memory location 
that can hold a capability

⬢ Tag and all bytes of the data in a capability must maintain 
single copy atomicity

⬢ Sometimes they must be split and stored in separate locations:

⬢ Integration of tag-aware subsystems (e.g. security islands) into non-tag aware 
systems

⬢ Integration with standard, non-tag aware, system IPs:

⬢ For example: Dynamic Memory Controllers and Last Level Caches.

⬢ The CMU addresses these issues
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CMU Challenges
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⬢ Preserving atomicity of tag and data stored in different 
locations

⬢ In a system with multiple bus managers and subordinates

⬢ Downstream bus fabric and IPs are aggressively reordering 
transactions (to optimize throughput)

⬢ Minimizing overhead

⬢ Both in terms of bandwidth and latency

⬢ To a level comparable to non-CHERI implementations

⬢ Maximizing design re-use

⬢ by supporting a wide-range of use-cases
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Maximising Design Re-Use 
Example deployments
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Typical use case, with DDR memory

Security Island

HPC/Server with multiple 
DRAM ports

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


⬢ All tag bits held in local memory 
within the CMU

+ No additional external memory 
requests ever generated

- Requires 1-bit of local memory for 
every location in external memory 
which can hold a capability.

- On-chip memory demand gets too 
high for larger external memories

- Realistic limit is about 128Mbytes

⬢ Example use case:

⬢ Tag bits for a security island requiring 
some off-chip capability storage.
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⬢ Tags bits for recently accessed memory 
stored in a tag cache

⬢ Each Tag Cache Line caches the tags for 
nominally a 4K memory block

⬢ When the line size is 256-bit and CLEN is 128-bit

+ No limit on size of memory on which cache 
operates

- General issues associated with caching 
e.g. non-determinism compared to Tag Stash 
Mode

- When valid tags are sparse, cache can fill 
with lots of “empty” lines containing no valid 
tags
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An enhancement to Tag Cache Mode.

⬢ Nominally 1 bit of local memory allocated for 
each 4K block of memory where capabilities can 
be stored

⬢ This is when the line size is 256-bit and CLEN is 128-bit

⬢ This Group Bit is set if the block contains one or 
more valid capabilities

+ Avoids ‘wasting’ cache space on empty lines

+ When the bit is clear, no tag store access needed:
+   For any load
+   For any non- or invalid capability write

+ Local memory requirement a fraction (1/256) of 
that for Tag Stash Mode
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Tag Group-Bit Cache Mode

TCLSZ=Tag Cache Line Size (in bits)
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⬢ CMU has a configurable number of 
address filters

⬢ Each Address Filter Table Entry 
(AFTE) defines a region

⬢ Uses a NAPOT encoding scheme similar 
to that used in the PMP 

⬢ Unmapped regions are handled as 
untagged

⬢ Tag handling strategies can be 
assigned on a per region basis at 
run-time

⬢ Memory used as tag storage can, 
by default, only accessed by the 
CMU
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Combining Modes: Address Filtering
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Other Industrial Quality Level Features
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⬢ Implemented using Codasip's Process Development Framework (CPDF)

⬢ This process has been certified to ISO 26262:2018 (ASIL D) and ISO/SAE 21434:2021

⬢ Suitable for use in functional safety applications

⬢ Reliability, Availability and Serviceability (RAS) features (all optional):

⬢ ECC protection of all RAMs local to the CMU

⬢ Parity support on AXI ports

⬢ RV-I RERI (RAS Error Record Register Interface) Specification compliant error reporting

⬢ Performance Monitoring

⬢ A configurable number of performance counters for optimising/evaluating the 
efficiency of the tag handling

⬢ Efficient Tag Revocation

⬢ Can be programmed with a physical address region in which to invalidate all tags
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Status and Acknowledgements
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⬢ Release now available for partner evaluation

⬢ Evaluation Platform

⬢ Integrates CMU with Codasip X730 core on an FPGA board

⬢ Booting Linux in Tag Group Cache Mode and running Doom!

⬢ Platform release for partners available imminent

⬢ Next step integrating performance counters into Linux profiler we can perform 
detailed performance study  

⬢ This work acknowledges the research done at Cambridge University 
in this area( Efficient Tagged Memory by Alexandre Joannou et al. )
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