
Efficient system-level

support for CHERI

Capabilities

09 April 2025

The Capability Management Unit (CMU)

Mark Hill
Distinguished Engineer & Lead CPU Architect

– Codasip

System-level requirements for CHERI

09 April 2025

⬢ A system must maintain a tag bit for every memory location
that can hold a capability

⬢ Tag and all bytes of the data in a capability must maintain
single copy atomicity

⬢ Sometimes they must be split and stored in separate locations:

⬢ Integration of tag-aware subsystems (e.g. security islands) into non-tag aware
systems

⬢ Integration with standard, non-tag aware, system IPs:

⬢ For example: Dynamic Memory Controllers and Last Level Caches.

⬢ The CMU addresses these issues

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

CMU Challenges

09 April 2025

⬢ Preserving atomicity of tag and data stored in different
locations

⬢ In a system with multiple bus managers and subordinates

⬢ Downstream bus fabric and IPs are aggressively reordering
transactions (to optimize throughput)

⬢ Minimizing overhead

⬢ Both in terms of bandwidth and latency

⬢ To a level comparable to non-CHERI implementations

⬢ Maximizing design re-use

⬢ by supporting a wide-range of use-cases

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Maximising Design Re-Use
Example deployments

09 April 2025

Typical use case, with DDR memory

Security Island

HPC/Server with multiple
DRAM ports

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

⬢ All tag bits held in local memory
within the CMU

+ No additional external memory
requests ever generated

- Requires 1-bit of local memory for
every location in external memory
which can hold a capability.

- On-chip memory demand gets too
high for larger external memories

- Realistic limit is about 128Mbytes

⬢ Example use case:

⬢ Tag bits for a security island requiring
some off-chip capability storage.

09 April 2025

Tag Stash Mode

Front End

Tag return

Back End

Local
Memory

AXI

AXI

Tag request

Downstream

Control
Registers

AHB

UpstreamControl

Address Filter

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

⬢ Tags bits for recently accessed memory
stored in a tag cache

⬢ Each Tag Cache Line caches the tags for
nominally a 4K memory block

⬢ When the line size is 256-bit and CLEN is 128-bit

+ No limit on size of memory on which cache
operates

- General issues associated with caching
e.g. non-determinism compared to Tag Stash
Mode

- When valid tags are sparse, cache can fill
with lots of “empty” lines containing no valid
tags

09 April 2025

Tag Cache Mode

Front End

Tag return

Back End

Tag
Cache

Arbiter

AXI

AXI

AXI

Tag request

Downstream

Control
Registers

AHB

UpstreamControl
OOB
Tag Bits

Address Filter

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

An enhancement to Tag Cache Mode.

⬢ Nominally 1 bit of local memory allocated for
each 4K block of memory where capabilities can
be stored

⬢ This is when the line size is 256-bit and CLEN is 128-bit

⬢ This Group Bit is set if the block contains one or
more valid capabilities

+ Avoids ‘wasting’ cache space on empty lines

+ When the bit is clear, no tag store access needed:
+ For any load
+ For any non- or invalid capability write

+ Local memory requirement a fraction (1/256) of
that for Tag Stash Mode

09 April 2025

Tag Group-Bit Cache Mode

TCLSZ=Tag Cache Line Size (in bits)

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

⬢ CMU has a configurable number of
address filters

⬢ Each Address Filter Table Entry
(AFTE) defines a region

⬢ Uses a NAPOT encoding scheme similar
to that used in the PMP

⬢ Unmapped regions are handled as
untagged

⬢ Tag handling strategies can be
assigned on a per region basis at
run-time

⬢ Memory used as tag storage can,
by default, only accessed by the
CMU

09 April 2025

Combining Modes: Address Filtering

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Other Industrial Quality Level Features

09 April 2025

⬢ Implemented using Codasip's Process Development Framework (CPDF)

⬢ This process has been certified to ISO 26262:2018 (ASIL D) and ISO/SAE 21434:2021

⬢ Suitable for use in functional safety applications

⬢ Reliability, Availability and Serviceability (RAS) features (all optional):

⬢ ECC protection of all RAMs local to the CMU

⬢ Parity support on AXI ports

⬢ RV-I RERI (RAS Error Record Register Interface) Specification compliant error reporting

⬢ Performance Monitoring

⬢ A configurable number of performance counters for optimising/evaluating the
efficiency of the tag handling

⬢ Efficient Tag Revocation

⬢ Can be programmed with a physical address region in which to invalidate all tags

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Status and Acknowledgements

09 April 2025

⬢ Release now available for partner evaluation

⬢ Evaluation Platform

⬢ Integrates CMU with Codasip X730 core on an FPGA board

⬢ Booting Linux in Tag Group Cache Mode and running Doom!

⬢ Platform release for partners available imminent

⬢ Next step integrating performance counters into Linux profiler we can perform
detailed performance study

⬢ This work acknowledges the research done at Cambridge University
in this area(Efficient Tagged Memory by Alexandre Joannou et al.)

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201711-iccd2017-efficient-tags.pdf

THANK YOU

https://creativecommons.org/licenses/by-sa/4.0/

This work © 2025 by CHERI Alliance is licensed under CC BY-SA 4.0 (Creative Commons

Attribution-ShareAlike 4.0 International) – https://creativecommons.org/licenses/by-sa/4.0/

Contact mark.hill@codasip.com

Web www.codasip.com

09 April 2025

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:mark.hill@codasip.com
http://www.codasip.com/

	Slide 1: Efficient system-level support for CHERI Capabilities
	Slide 2: System-level requirements for CHERI
	Slide 3: CMU Challenges
	Slide 5: Maximising Design Re-Use Example deployments
	Slide 9: Tag Stash Mode
	Slide 10: Tag Cache Mode
	Slide 11: Tag Group-Bit Cache Mode
	Slide 12: Combining Modes: Address Filtering
	Slide 13: Other Industrial Quality Level Features
	Slide 16: Status and Acknowledgements
	Slide 17

