
Industrial-Strength Formal Verification of RISC-

V Processors

Dr. Ashish Darbari

Founder & CEO

Axiomise

Verification Trends
Wilson research reports 2024

Training Consulting Services Apps

Axiomise Solutions
Making formal normal by building a tool agnostic layer of solutions

1-2-3-4 days

Instructor-led

On-demand

Primer

Comprehensive

Methodology

Tool independent

Any duration

Training follow up

Methodology

Strategy

Planning

Review

Mentoring

Any duration

Verification Strategy

Verification Planning

Execution

Sign-off

Weekly updates

Agile workflow

formalISA®, footprintTM

Tool vendor independent

Push button, easy set-up

Find arch & uArch bugs

Functional verification

Safety, security, PPA

Bug presence & absence

Consulting & Services

AI/ML accelerator

NoC

Ethernet Switch

Mixed-signal, low-power chip

Power controller

DMA controller

Multi-threaded processor

Bus bridges (AXI/CHI/OCP/TileLink)

Cache sub-systems

GPU blocks

I2C/USB/HDMI/I2S

Formal verification at scale – turnkey services delivered on some of the projects

We have been carrying out functional verification of
designs with over 1 billion gates with formal.

Our abstraction-powered methodologies work can
find bugs in new and existing designs.

We also help with customers' post-silicon issues on
designs previously verified by others.

Why is processor verification hard?
Why bugs escape to silicon?

A Holistic Approach is Missing
A unifying perspective is missing

DESIGN/MICROARCHITECTURE

ARCHITECTURE

NETLIST

SILICON

Architectural Micro-architectural

Security

X-propagation

Lockstep

verification

Deadlock

Power

Modern-day Processors

Pipelining Interlocking Forwarding

Branches Jumps Exceptions

Stalls Interrupts Debug

Extensions Clock gating Arithmetic

Power Safety Security

Massively optimised

Complex Control and Data Dependencies

Branches:

• Speculative branches

• Forward jumps, Backward jumps, Page size jumps, Page boundary jumps, Jumps across
pages (same or different pages)

Back-to-back memory operations:

• Cache hit & cache misses

• Write-through stores

• Cache bypasses, atomics and cache coherency

And the cores have in-order or out-of-order behaviour?

Accelerating debug and sign-off for custom designs using exhaustive formal

Our Formal RISC-V Solution

1. No test case to write

2. No manual checker to write

3. No verification code to be written

4. Exhaustively prove that all ISA instructions work as expected under all conditions

What goes in our APP?

1. Your RISC-V core

2. Set up file

3. Coverage specification

What comes out?

 Exhaustive proofs that “mathematically” prove under all conditions:

 Each instruction in the ISA works always as expected

 Scenarios specified in the coverage specification can “always” happen

 Visualize that scenarios in the coverage specification “can happen”

Enables adoption of formal methods more widely

PASS

FAIL

VENDOR NEUTRAL

USE ANY FORMAL TOOL YOU LIKE

formalISA
How different pieces connect?

ibex
Complete democracy – use any tool you like

Formal verification
Bugs and Proofs

ibex zeroriscy cv32e40p WARP-V Cheriot-ibex

Pipeline stages 2-stage 2-stage 4-stage 6-stage 4-stage 2-stage 2

No. of issues 65 77 5 30 30 30 6

Previously

verified

Yes Yes No Yes Yes Yes Yes

How was it

previously

verified?

Simulation Simulation Simulation & Formal Formal Formal Formal Simulation & Formal

Time taken to

find issues

< 30 seconds < 30 seconds < 30 seconds < 30 seconds < 30 seconds < 30 seconds <1 min

Nature of

analysis and

issues

Microarchitectural

Deadlocks and

Architectural

Microarchitectural

Deadlocks and

Architectural

Architectural Architectural Architectural Architectural Corner-case bugs

When was the

issue found?

2019 2019 2020 2021 2021 2021 2024

cv32e40p
32-bit, 4-stage in-order pipeline

CVA6
64-bit six-stage, in-order issue, out-of-order execution, in-order commit

From the OPENHW Group Page

CVA6 is a 6-stage, single issue, in-order CPU which implements the 64-bit RISC-V instruction set. It fully

implements I, M, A and C extensions as specified in Volume I: User-Level ISA V 2.3 as well as the draft

privilege extension 1.10. It implements three privilege levels M, S, U to fully support a Unix-like operating

system. Furthermore, it is compliant to the draft external debug spec 0.13. It has configurable size, separate

TLBs, a hardware PTW and branch-prediction (branch target buffer and branch history table). The primary

design goal was on reducing critical path length.

CVA6
64-bit six-stage, in-order issue, out-of-order execution, in-order commit

From the OPENHW Group Page

CVA6 is a 6-stage, single issue, in-order CPU which implements the 64-bit RISC-V instruction set. It fully

implements I, M, A and C extensions as specified in Volume I: User-Level ISA V 2.3 as well as the draft

privilege extension 1.10. It implements three privilege levels M, S, U to fully support a Unix-like operating

system. Furthermore it is compliant to the draft external debug spec 0.13. It has configurable size, separate

TLBs, a hardware PTW and branch-prediction (branch target buffer and branch history table). The primary

design goal was on reducing critical path length.

Reporting
Scheduler and Reporter for Formal

SURF

SURF Dashboard
RISC-V

SURF Dashboard
RISC-V

SURF Dashboard
Example reporting bugs

SURF Dashboard
Example reporting bugs

Anatomy of bugs
Processor bugs caught by formalISA

BEQ Failure

ibex

Functional verification - ibex

Bug caused due to incoming debug request on the debug interface when the controller is in the DECODE state.

Nothing in the design to take care of such requests, causing the PC to be not updated correctly.

BEQ Failure
Functional verification - ibex

Only seen when debug arrives and the controller FSM is in the DECODE state.

Precise timing of arrival of debug makes this bug really hard to catch in dynamic simulation.

Formal catches it in seconds in 7 cycles!

Communication on ibex
Corner-case bugs confirmed

WARP-V
Six stage pipelined processor with a range of bugs

https://github.com/darbaria/axiomise-warpv-formal-6-stage/issues

Memory subsystem
Caught by our formalISA

Cache Issues
Incorrect validation of cache line due to bypass store

Cache Issues
Incorrect validation of cache line due to bypass store

Cache Issues
Incorrect validation of cache line due to bypass store

Cache Issues
Incorrect validation of cache line due to bypass store

CHERIOT-IBEX
Corner case bugs

Illegal instruction handling
Verified in September 2024

The illegal instruction affected the execution of the valid

instruction that followed it.

The illegal load instruction affected the

execution of the valid AND (or any R-

TYPE) instruction that followed it.

Issues
• Sending the illegal instruction request to the memory.

• Wasted execution power.

• Invalid data in the register file and subsequently in memory.

Illegal instruction handling – bit manipulation
After the first bug fix, bit manipulations instructions were broken

https://github.com/microsoft/cheriot-ibex/issues/51

Decoder Issues
Very interesting set of issues

https://github.com/microsoft/cheriot-ibex/issues/47

Decoder Issues
Very interesting set of issues

https://github.com/microsoft/cheriot-ibex/issues/47

Design gate count Design flop count Redundant components
Estimated redundant gates per

category

303,737 14,723

Counter: 3 Counter:768

Register: 313 Register:16,440

Array: 23 Array:7872

Footprint – Area analyser for silicon
Cheriot-ibex

Summary

Bugs are a natural consequence of implementing design

Bugs caught late in the design cycle result in very expensive fixes and catastrophic failures

Formal == efficient bug hunting & exhaustive proofs right at the time of design bring up

Architectural validation must employ formal verification to build “proofs” of bug absence

Architects, designers, verification engineers can all use formalISA without any FV experience

Find bugs, build proofs, obtain inter-operable coverage model for use in simulation and other formal tools

Use any formal verification tool of your choice

Find corner-case bugs as well as build exhaustive proofs

Formal methods is a necessity not a nice-to-have

www.axiomise.com

CONSULTING & SERVICES

TRAINING

CUSTOM SOLUTIONS

info@axiomise.com

	Company Introduction
	Slide 1
	Slide 2: Verification Trends
	Slide 3: Axiomise Solutions
	Slide 4: Consulting & Services

	SoC - what it is?
	Slide 5: Why is processor verification hard?
	Slide 6: A Holistic Approach is Missing
	Slide 7: Modern-day Processors
	Slide 8: Complex Control and Data Dependencies
	Slide 9
	Slide 10: Our Formal RISC-V Solution
	Slide 11: formalISA
	Slide 12: ibex
	Slide 13: Formal verification
	Slide 14
	Slide 15: cv32e40p
	Slide 16: CVA6
	Slide 17: CVA6
	Slide 18: Reporting
	Slide 19: SURF Dashboard
	Slide 20: SURF Dashboard
	Slide 21: SURF Dashboard
	Slide 22: SURF Dashboard
	Slide 23: Anatomy of bugs
	Slide 24: BEQ Failure
	Slide 25: BEQ Failure
	Slide 26: Communication on ibex
	Slide 27: WARP-V
	Slide 28: Memory subsystem
	Slide 29: Cache Issues
	Slide 30: Cache Issues
	Slide 31: Cache Issues
	Slide 32: Cache Issues
	Slide 33: CHERIOT-IBEX
	Slide 34: Illegal instruction handling
	Slide 35: Illegal instruction handling – bit manipulation
	Slide 36: Decoder Issues
	Slide 37: Decoder Issues
	Slide 38
	Slide 39: Footprint – Area analyser for silicon
	Slide 40: Summary
	Slide 41
	Slide 42

