
IMPLEMENTATION OF CHERI

CAPABILITIES IN A SAFETY-CRITICAL

REAL-TIME OPERATING SYSTEM FOR

INTELLIGENT EDGE SYSTEMS

09 April 2025

Dmytro Yeliseyev
Software Architect, Wind River

Agenda

⬢ Approach

⬢ Source of inspiration

⬢ VxWorks

⬢ Conclusion

09 April 2025

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Approach

09 April 2025

Approach

09 April 2025

Due to the complexity of the overall system architecture and dependencies of system components, it

was decided to take an incremental development approach involving smaller steps that would enable

progress to be assessed and validated, which would reduce overall technical risk compared to

attempting to integrate modifications of multiple system architecture components in a single step.

• Get VxWorks RTOS running on Morello silicon but without enabling support for CHERI capabilities.

• Get the VxWorks RTOS kernel running in hybrid mode.

• Enable the pure capability mode support only in VxWorks user space.

While estimating the changes needed in the kernel running in the hybrid mode to
support pure capability mode in the user space, it was found that this effort is comparable to
the effort needed to run the entire kernel in pure capability mode. It was therefore decided
to skip this step.

• Enable pure capability mode support in the VxWorks kernel.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Source of inspiration

09 April 2025

SOURCE OF INSPIRATION

09 April 2025

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

A script to build and run CHERI-related software—one build tool to rule them all:
cheribuild https://github.com/CTSRD-CHERI/cheribuild

Supported operating systems include Ubuntu.

• CheriBSD: A complete memory- and pointer-safe FreeBSD C/C++ kernel + user space, which is very useful to get

examples of how to use the CHERI software and tools existing so far.

• The Morello SoC is a prototype silicon implementation of a capability hardware CPU instruction set architecture

(ISA): an experimental application of CHERI ISAv8 to ARMv8-A. The Morello SoC is based on the Arm Neoverse

N1 core with tagged memory support.

• ARM Development Studio (Morello Edition) can be configured to use the embedded JTAG probe on the ARM

Morello SDP.

Adversarial CHERI exercises and missions: https://ctsrd-cheri.github.io/cheri-exercises

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://github.com/CTSRD-CHERI/cheribuild
https://ctsrd-cheri.github.io/cheri-exercises

VxWorks

09 April 2025

VxWorks – build system

09 April 2025

• wr-llvm-morello - an LLVM tool chain wrapped by

the wr-llvm environment and containing changes from

the morello-llvm project implementing CHERI extension

for the ARM8A architecture.

• --target=arm64 -> --target=aarch64

o -march=morello+noa64c

o -march=morello+a64c

o -march=morello+c64 -mabi=purecap

• ldarm64 -> ld.lld

o .cpu_private (DSECT) ->

.cpu_private (COPY)

o __cap_reloc – split .text vs .rodata

o .size for asm symbols

o …

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

VxWorks – RTOS components

09 April 2025

• HW Support - Morello SDP + QEMU :
• Architecture support Neoverse N1 CPU.

• BSP + PSL (FDT, boardLib, std drivers)

• MMU (> 512GB mem addr space, etc.)

• Startup
• Vectors

• MMU enable RW of capabilities

• Enable CHERI instructions

• __cap_reloc runtime initialization

• Scheduler
• Extend TCBs, 128bit regs + special regs etc.

• Align structures, system call APIs, etc.

• Exceptions
• E.g. ERET required CELR instead of ELR

• New exception types -> handlers

• Memory Managers

• Kernel libraries API
• Tasks, Signals, Utils, Shell, User Space…

• User Space
• RTP DLL: TLS descriptor reloc types support

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

VxWorks: SOURCE CODE

09 April 2025

bcopy: To be able to copy memory blocks with capabilities inside, you must use capability load

and store instructions to propagate capability metadata and tags.

• The source address must be 16-byte aligned before whole 16-byte chunks are copied,

so copy small chunks first until the address is aligned.

• Modify copy instructions:

ldr c1, [c0], #16

str c1, [c0], #16

/*

* REG_SET - ARM Register set

*/

typedef struct /* REG_SET - ARM register set */

{

_Vx_ULONG r[_GREG_NUM]; /* general purpose registers */

_Vx_ULONG sp; /* stack pointer */

_Vx_INSTR * pc; /* program counter */

#if __has_feature(capabilities)

typedef uintcap_t ARM_REG_TYPE;

#else

typedef uintptr_t ARM_REG_TYPE;

#endif

#define ARM_REG_ALIGN _Alignas (sizeof (ARM_REG_TYPE))

#define ARM_REG_M ARM_REG_ALIGN ARM_REG_TYPE

/*

* REG_SET - ARM Register set

*/

typedef struct /* REG_SET - ARM register set */

{

ARM_REG_M r[_GREG_NUM]; /* general purpose registers */

ARM_REG_M sp; /* stack pointer */

ARM_REG_M pc; /* program counter */

Expected problems:

Alignment issues: Capabilities are always

naturally aligned. This is a requirement of the

hardware.
(there is one tag bit per 128 bits/16 bytes)

ldp x1, x2, [x0], #16

stp x1, x2, [x0], #16

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

VxWorks: SOURCE CODE

09 April 2025

• Unexpected problems

Atomic op:
Non-morello: LDAXR/STLXR; Morello: CAS – crash without ISB in front of it

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

VxWorks – problems detected in compile-time

09 April 2025

VxWorks Source Build (VSB) in pure capability mode:
• ~115 warnings not related to capabilities

• ~2,345 warnings related to capabilities

• Breakdown by type of warning:

o 2,160 (~92%): Cast from provenance-free integer type to pointer type will give pointer that cannot be

dereferenced

o 110 (~5%): Alignment problems of various types; for example, structure members

o 67 (~3%): Implicit conversion loses capability metadata

o 8 (0.3%): Binary expression on capability types, not clear which is source of provenance

The vast majority of warnings are indicators of traditionally-written code, especially

when assumptions are made about arbitrarily-sized integers (that is, long) being able to
store pointer values.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

VxWorks – problems detected in compile-time

09 April 2025

Resolution:
• Apply VxWorks CHERI coding rules!

o C/C++: Macros throughout to handle conversion between pointer and integer values

o ASM: Macros for registers and common operations

• Modify kernel APIs using VIRT_ADDR, where a pointer (capability) is really intended/required.

• Add support for atomic operations on capabilities (128-bit values).

• Rework structure alignment as needed to be sympathetic to capabilities.

• GOT: __cap_reloc runtime initialization:

#define SYS_BOOT_LINE_LEN 256
char bootLine[SYS_BOOT_LINE_LEN];
void* addr = (void*) &bootLine;

void* addr = (void*) 0x1C090000;

cheri_init_globals_3();

size_t len = SYS_BOOT_LINE_LEN;
VIRT_ADDR const tmp = ADR_FROM_PTR (*addr);
*addr = DATA_PTR_FROM_ADR_WITH_LEN (tmp, len);

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Conclusion

09 April 2025

CONCLUSION

09 April 2025

• Team of four engineers—two years

• CHERI tool chain

• Morello hardware and QEMU support

• VxTest and CHERI tests

• Regression test suite

• OS integration tests

• CHERI core functionality tests

• Hybrid capability mode

• Pure capability mode

• Kernel: The final adjustments are in progress

at the time of this material’s creation.

• User space is coming.

Target Name: vxTarget

_________ _________

\........\ /......../

\........\ /......../

\........\ /......../

\........\ /......../

\........\ \......./

\........\ \...../ VxWorks Cert Edition SMP 64-bit

\........\ \.../

\........\ \./ Release version: 23.06

\........\ - Build date: Jan 16 2025 17:15:49

\........\

\......./ Copyright Wind River Systems, Inc.

\...../ - 1984-2025

\.../ /.\

\./ /...\

- -------

Board: Arm Morello (FDT)

CPU Count: 1

OS Memory Size: 14208MB

ED&R Policy Mode: Deployed

Adding 14983 symbols for standalone.

vxTestOptions: -em -v 4

->

-> vxTest

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Slide 1: IMPLEMENTATION OF CHERI CAPABILITIES IN A SAFETY-CRITICAL REAL-TIME OPERATING SYSTEM FOR INTELLIGENT EDGE SYSTEMS
	Slide 2: Agenda
	Slide 3: Approach
	Slide 4: Approach
	Slide 5: Source of inspiration
	Slide 6: SOURCE OF INSPIRATION
	Slide 7: VxWorks
	Slide 8: VxWorks – build system
	Slide 9: VxWorks – RTOS components
	Slide 10: VxWorks: SOURCE CODE
	Slide 11: VxWorks: SOURCE CODE
	Slide 12: VxWorks – problems detected in compile-time
	Slide 13: VxWorks – problems detected in compile-time
	Slide 14: Conclusion
	Slide 15: CONCLUSION

