
Porting Rust to Morello
A safe software layer for a safe hardware layer
Sarah Harris, Simon Cooksey, Michael Vollmer,
Mark Batty

April 2025



Capability machine

I Morello has hardware pointer provenance
I Pointers have an address (as usual), but also some metadata

including a bounds and permissions flags.
I There is a transparent hardware managed validity bit which

prevents pointer spoofing.

pointer
127 63 0

addressmetadata



Morello prototype



Rust
I Rust is designed to be a safe systems programming language.
I The compiler (mostly) statically verifies that memory safety

issues like use-after-free, and buffer overruns cannot happen.
fn main() {

let mut x : [u8; 8] = [0; 8];
x[9] = 1;

}

I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}
$ ./oob-runtime
Segmentation fault



Rust
I Rust is designed to be a safe systems programming language.
I The compiler (mostly) statically verifies that memory safety

issues like use-after-free, and buffer overruns cannot happen.
fn main() {

let mut x : [u8; 8] = [0; 8];
x[9] = 1;

}
$ rustc ./main.rs -o oob-compile
error: this operation will panic at runtime
--> src/main.rs:3:5

|
3 | x[9] = 1;

| ^^^^ index out of bounds: the length is 8 but the index is 9
|

I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}
$ ./oob-runtime
Segmentation fault



Rust

I Rust is designed to be a safe systems programming language.
I The compiler (mostly) statically verifies that memory safety

issues like use-after-free, and buffer overruns cannot happen.
I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}

$ ./oob-runtime
Segmentation fault



Rust

I Rust is designed to be a safe systems programming language.
I The compiler (mostly) statically verifies that memory safety

issues like use-after-free, and buffer overruns cannot happen.
I Rust is designed to be used in places where C/C++ is used.
I Rust has an escape keyword unsafe.

fn main() {
let mut x : [u8; 8] = [0; 8];
unsafe {

*x.get_unchecked_mut(9) = 1;
}

}
$ ./oob-runtime
Segmentation fault



Why port Rust to Morello?

I The guarantees of capabilities complement the guarantees of
Rust

I Rust provides compile-time guarantees for safe code
I Capabilities provide run-time guarantees for unsafe code



Why port Rust to Morello?

I The guarantees of capabilities complement the guarantees of
Rust

I Rust provides compile-time guarantees for safe code
I Capabilities provide run-time guarantees for unsafe code



The Rust Compiler

Parser High-level IR Middle IR LLVM IR

x86

ARM

Morello

…



The Rust Compiler

Parser High-level IR Middle IR LLVM IR

x86

ARM

Morello

…



Compiler changes — plumbing

The first task is hooking Rust up with Morello LLVM.
I We added a target, and set the appropriate options
I We hooked up Morello clang as the linker for the Rust compiler
I We extended the Rust target options to allow us to describe

object layout differences…



Compiler changes — object layout

Object layout differences, you say?
I usize is a type which must represent the whole range of

addresses a pointer can dereference.
I It is used for array indexing, and array bounds.
I We don’t want usize to be 128 bits, memory isn’t 128 bit on

Morello†.
I We break the equality between usize and pointer size instead.

†This approach was explored by Nicholas Sim in his Masters Thesis.



Compiler changes — constant evaluation

I Rust’s IR is interpreted within the compiler to do constant
evaluation.

I If it attempts to read uninitialised data that’s considered an
error.

I We cannot initialise the metadata of these pointers at compile
time, so we had to patch up that divide.



Standard library changes

I The worst so far has been in a concurrency library which casts
pointers to/from integers to tag them with metadata in the
lower bits.

I Some bits of the FFI needed some tweaks, integer types being
replaced with pointer types.

pub unsafe fn cast_from_usize(signal_ptr: usize) -> SignalToken {
SignalToken { inner: mem::transmute(signal_ptr) }

}



Measuring the performance of bounds checking

I It is interesting to understand what cost there is to Rust’s
dynamic bounds checking and how it relates to the always-on
bounds checking in Morello.

I We have implemented a flag on the Rust compiler,
-C drop_bounds_checks, which prevents the compiler from
emitting software bounds checks. We call this version of the
language RustDBC.



Measuring the performance of bounds checking
I We have picked 19 suites from the crates.io repository, which

in total contain 872 benchmarks.
I These crates have 108k lines of Rust, of which 1k is unsafe.

This does not include the dependencies.
I The benchmarks are run many times using the standard

cargo bench command, and results are aggregated.

From cargo bench we extract time per iteration of the benchmark,
and the run-to-run variance, for each of the four modes under test:

hashbrown-0.11.2/clone_from_large
Rust RustDBC

Time/iter ± Time/iter ±

Purecap 15,779 8 15,818 59
Hybrid 15,557 53 15,601 16



Measuring the performance of bounds checking
I We have picked 19 suites from the crates.io repository, which

in total contain 872 benchmarks.
I These crates have 108k lines of Rust, of which 1k is unsafe.

This does not include the dependencies.
I The benchmarks are run many times using the standard

cargo bench command, and results are aggregated.
From cargo bench we extract time per iteration of the benchmark,
and the run-to-run variance, for each of the four modes under test:

hashbrown-0.11.2/clone_from_large
Rust RustDBC

Time/iter ± Time/iter ±

Purecap 15,779 8 15,818 59
Hybrid 15,557 53 15,601 16



 0

 0.5

 1

 1.5

 2

 2.5

matrixmultiply ndarray num-bigint priority-queue petgraph rust-decimal smawk strsim-rs uuid-rs

 0

 0.5

 1

 1.5

 2

 2.5

aes arrayvec fixedbitset hashbrown sha2 sha3 indexmap itoa lebe

purecap-bounds purecap-nobounds hybrid-nobounds



Performance results

Overall (by geometric mean) we measured a slow-down on Purecap
Morello. We found the cost of Rust’s dynamic bounds checking to be
extremely low.

The slowdown on Morello appears to be exagerated because branch
prediction is less effective on the prototype. The fix can be modelled
on current hardware in a special target, and we will re-run these tests.

Rust for Morello: Always-On Memory Safety, Even in Unsafe Code,
ECOOP 2023



What Effect Could Our Changes Have?

Object layout differences: differentiate usize and capability size.

Changing types? Doesn’t that break things?
I Well, yes, but we think it will be rare
I Plain pointers are usually unsafe
I usize to pointer casts are odd and unidiomatic
I Still, we can do better than, “we think”!



What Effect Could Our Changes Have?

We arranged a Crater run with lints to detect misuse (387,225 crates).

I Result: 0.49-0.85% of projects fail the lint
I We should note some limitations, but this looks promising

I false negatives (transmute::<usize, *const T>())
I false positives (ALIAS_FOR_ZERO as *const T)
I we scanned logs for patterns, not foolproof!†
I 37.6% broken anyway, aborted builds can hide problems

†script here: https://gist.github.com/seharris/fb7606\
e0dbddcabbc9702c644372a95b

https://gist.github.com/seharris/fb7606%5C%2520e0dbddcabbc9702c644372a95b
https://gist.github.com/seharris/fb7606%5C%2520e0dbddcabbc9702c644372a95b


What Effect Could Our Changes Have?

We arranged a Crater run with lints to detect misuse (387,225 crates).

I Result: 0.49-0.85% of projects fail the lint
I We should note some limitations, but this looks promising
I false negatives (transmute::<usize, *const T>())
I false positives (ALIAS_FOR_ZERO as *const T)
I we scanned logs for patterns, not foolproof!†
I 37.6% broken anyway, aborted builds can hide problems

†script here: https://gist.github.com/seharris/fb7606\
e0dbddcabbc9702c644372a95b

https://gist.github.com/seharris/fb7606%5C%2520e0dbddcabbc9702c644372a95b
https://gist.github.com/seharris/fb7606%5C%2520e0dbddcabbc9702c644372a95b


Any questions?
I Port of Rust to Morello – Mac and Linux binaries.
I Rust code running on Morello + measured needed changes.
I Baremetal Rust (Michael Vollmer)
I Performance numbers need updating for benchmark target.

https://github.com/kent-weak-memory/rust

https://github.com/kent-weak-memory/rust

	Background
	Compiler changes
	Performance

