

Redesigning

Thread-Local

Storage For CHERI

Jessica Clarke
University of Cambridge

Disclaimers

14 November 2025

⬢ There will be:

⬢ Assembly

⬢ Pointers

⬢ Diagrams showing multiple levels of pointers

⬢ I only have 15 minutes; many details omitted

⬢ Find me afterwards if you still want to know more…

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Background

14 November 2025

14 November 2025

What Is TLS?

⬢ GNU + Microsoft extensions

⬢ Standardised in C11 / C++11

_Thread_local int x;

int next(void) {

return ++x;

}

Thread 1 next → 1

Thread 1 next → 2

Thread 1 next → 3

Thread 2 next → 1

Thread 2 next → 2

Thread 1 next → 4

…

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

What Is TLS?

14 November 2025

x

&x

Thread 1

…

x

&x

Thread 2

x

&x

Thread n

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Today’s Design

14 November 2025

y zx

Library 1

b ca

Library 2

TP

Library 1

_Thread_local int x, y, z;

Library 2

_Thread_local int a, b, c;

&b → TP + “b’s offset”

“b’s offset”

Same layout

for all threads

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

14 November 2025

Where Do These Offsets Come From?

⬢ Run-time loader first loads
executable, then
recursively all library
dependencies

⬢ Executable is always first

⬢ Offsets for executable’s TLS
variables are known at link
time – hard-coded into
output binary

next:

mrs x8, TPIDR_EL0

add x8, x8, #0x0, lsl #12

add x8, x8, #0x10

ldr w9, [x8]

add w0, w9, #0x1

str w0, [x8]

ret

0x0 << 12

+ 0x10

TP

Load,

increment,
store

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

14 November 2025

Where Do These Offsets Come From?

⬢ In general, offset not
known at link time

⬢ Offset itself is a variable

⬢ Stored in Global Offset
Table (“GOT”) alongside
pointers to globals

⬢ Run-time loader fills in

next:

adrp x8, 0x20000

ldr x8, [x8, #0x8a8]

mrs x9, TPIDR_EL0

ldr w10, [x9, x8]

add w0, w10, #0x1

str w0, [x9, x8]

ret

Load offset

Variable

offset

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

dlopen()

14 November 2025

⬢ Dynamically loads new libraries after program has started
running (e.g. plugins)

⬢ What if they define new thread-local variables?

⬢ Space already allocated for existing threads based on libraries
initially present

⬢ Growing allocation might require moving it; pointers to thread-local
variables would no longer work

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

dlopen()

14 November 2025

⬢ New variables stored in separate allocation

⬢ How to get to them? Cannot just add offset to TP any more

⬢ Call magic “__tls_get_addr()” function implemented by run-
time loader

⬢ Run-time loader reserves space at start of TLS block to track
these allocations (points to “Dynamic Thread Vector”)

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

dlopen()

14 November 2025

y zx

Library 1

b ca

Library 2

TP

j ki

Library 3

DTV

Lib 2 Lib 3Lib 1RES

RES

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

TLS Meets CHERI

14 November 2025

Initial (Current) CHERI Adaptation

14 November 2025

⬢ Same model

⬢ Pointers now capabilities (TP and DTV entries, plus run-time
loader’s pointer to the DTV)

⬢ Problems:

⬢ TP’s bounds cover the entire TLS block – powerful capability

⬢ TP + offset for &x isn’t bounded to just x – need to dynamically
restrict bounds every time x is referenced

⬢ Ditto for DTV entries (though can at least restrict to library’s subset)

⬢ Compartmentalisation?

⬢

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Indirection

14 November 2025

TP

y zx

&x &y &z &y

Library 1 Library 2

Library 1 Library 2

“TGOT”

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

14 November 2025

As Code

next:

mrs c0, CTPIDR_EL0

add c0, c0, #0x0, lsl #12

ldr c1, [c0, #0x20]

ldr w8, [c1]

add w0, w8, #0x1

str w0, [c1]

ret

next:

adrp c8, 0x20000

ldr x8, [c8, #0x550]

mrs c0, CTPIDR_EL0

ldr c1, [c0, x8]

ldr w8, [c1]

add w0, w8, #0x1

str w0, [c1]

ret

Constant Offset Variable Offset

Load offset

Variable

offset
Load,

increment,
store

0x0 << 12

+ 0x20

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

dlopen() / DTV?

14 November 2025

⬢ As with TP, DTV now points to TGOTs (i.e. also add a level of
indirection)

⬢ TGOTs allocated separately for dynamically-loaded libraries
just like the data itself

⬢ Still a magic “__tls_get_addr()” function call (just
implemented with extra pointer chasing)

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

(Gratuitous) Diagram

14 November 2025

y zx

Library 1

b ca

Library 2

TP

j ki

Library 3

DTV

Lib 2 Lib 3Lib 1RES

RES &y &a&x

Library 1

&b &c&z

Library 2

&i &k&c

Library 3

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Blue is Calming?

14 November 2025

Library 1 Library 2

Library 1 Library 2

TP

Compartmentalisation

14 November 2025

&x &y &z &y

y zx

&x &y &z &y

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Future Work

14 November 2025

⬢ Implement compartmentalised TLS

⬢ Evaluate performance impact (not expected to be
significant)

⬢ Coming to a future CheriBSD release!

⬢ Initial Morello version will implement both schemes at the same time
to allow incremental transition

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/
This work © 2025 by CHERI Alliance is licensed under CC BY-SA 4.0 (Creative Commons
Attribution-ShareAlike 4.0 International) – https://creativecommons.org/licenses/by-sa/4.0/

Thank you!

Contact contact@cheri-alliance.org

Web www.cheri-alliance.org

14 November 2025

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:contact@cheri-alliance.org
mailto:contact@cheri-alliance.org
mailto:contact@cheri-alliance.org
http://www.cheri-alliance.org/
http://www.cheri-alliance.org/
http://www.cheri-alliance.org/

	Slide 1: Redesigning Thread-Local Storage For CHERI
	Slide 2: Disclaimers
	Slide 3: Background
	Slide 4: What Is TLS?
	Slide 5: What Is TLS?
	Slide 6: Today’s Design
	Slide 7: Where Do These Offsets Come From?
	Slide 8: Where Do These Offsets Come From?
	Slide 9: dlopen()
	Slide 10: dlopen()
	Slide 11: dlopen()
	Slide 12: TLS Meets CHERI
	Slide 13: Initial (Current) CHERI Adaptation
	Slide 14: Indirection
	Slide 15: As Code
	Slide 16: dlopen() / DTV?
	Slide 17: (Gratuitous) Diagram
	Slide 18: Blue is Calming?
	Slide 19: Compartmentalisation
	Slide 20: Future Work
	Slide 21

