Failure-Oblivious CHERI

How to bring resilience to CHERI?

Ka Wing Li
CHERITech’25

2025-11-14

¢¥ CAMBRIDGE

Outline

1. Background e 1

1.1 Memory Safety . ..ot e 2

1.2 Capability Hardware Enhanced RISC Instructions (CHERI) 4

1.3 Failure-Oblivious Computing + Boundless Memory Blocks, 5
CHERITech’25 @ CHERI

Background
€00

o)

o)

1.1 Memory Safety

1.1.1 Spatial - e.g. Buffer Overflow

uint32 t c;

uint32 t buffer[l6];

uint32 t *bp = buffer;

int main() {
assert((uintptr t)&c == (uintptr t)buffer + sizeof(buffer));
memset (bp, 0x42, sizeof(buffer) + sizeof(uint32 t));
printf("0x%08x\n", c);
exit (EXIT FAILURE);

© 00 NN OO U A~ W N B

CHERITech’25 Q@ CHERI

Background
0®0

o)

o)

1.1 Memory Safety

1.1.2 Temporal - e.g. Use After Free
uint32_t *np;

1

2 int main() {

3 if ((np = malloc(sizeof(*np))) == NULL) err(EXIT FAILURE, "malloc");
4 *np = 0x42; /* Allocated. */

5 free(np);

6 *np = 0x8; /* Freed, but in quarantine. */

7 malloc revoke quarantine force flush();

8 printf("0x%08x\n", *np); /* Revoked. */

9 exit (EXIT FAILURE);

10 }

CHERITech’25 Q) CHERI

CHERI mitigate 100%
spatial memory errors!

(

Let it crash.

(

X

>

What happen for out-of-
bound memory access?

The other day...
Breaking news. CHERI-

aware plane crash due
to software bug. ~~~

Security
VS

Reliability

Background
000

°

o)

1.2 Capability Hardware Enhanced RISC Instructions (CHERI)
Architectural capability in CHERI ISA version 9

Hooap
e
}_'44‘3

perms otype bounds

128-bit
capability

64-bit address

Pointer provenance valid capabilities can only be derived from existing valid capabilities
Capability monotonicity guarded derivation of new capabilities may narrow but never
broaden right.

CHERITech’25 Q) CHERI

Background
000

o)

°

1.3 Failure-Oblivious Computing + Boundless Memory Blocks

Failure-Oblivious Computing

« in-bound access granted

- suppress out-of-bound loads
- suppress out-of-bound stores

Boundless Memory Blocks

« redirect invalid memory access to LRU cache

return zeros for

0 a’l out-of-bound loads,

S S rather than faulting

suppress out-of-bound stores,

rather than faulting

« return manufactured (random) sequence of values for uninitialized memory

CHERITech’25

) CHERI

Outline

2. APDPTOACh ..o 6

2.1 Point of Interesto i 7

2.2 From language persepectiveouiui it 8

2.3 From architecture persepectiveovuiiiiiiit i e 10
CHERITech’25 @ CHERI

Approach
°

00O
@)

2.1 Point of Interest

<

Exception direction

Software Hardware

Userspace Kernel

Mitigation approach

CHERITech’25 Q@ CHERI

Approach
o

®OO
@)

2.2 From language persepective

 Null-terminated byte strings
« Off-by-one error

Bounds-checking interfaces, Annex K in the ISO C standard

size_t strlen(const char *s);
size t strnlen s(const char *s, size t maxsize);
char buffer[4] = "ABCD"; // missing null-terminator

printf("%sd", strlen(buffer));
printf("%d", strnlen s(buffer, 8)); // wrong size

U A W N =

CHERITech’25 Q@ CHERI

Library can obtain the metadata of a capability

Approach
o

ooe
@)

2.2 From language persepective

CHERI-aware libc

size t strnlen c(const char *s, size t maxsize) {
auto bound = cheri get metadata(s);
if (!bound.valid) return 0;

1
2
3
4 if (bound.remain < maxsize) maxsize = bound.remain; // correct bound
5 return strnlen s(s, maxsize);

§)

}

« unintended truncation? « new C library semantics? « runtime overhead?

CHERITech’25 Q@ CHERI

Approach
o

00O
([]

2.3 From architecture persepective

 instruction-fetch failures
. load and store failures

vold print secret() { printf("secret info\n"); } @il!
char b[1024];

memcpy (b, print secret, 1024);

void (*fp)() = (void (*)())b;

(*fp) ();

g A W N =

CHERITech’25 Q@ CHERI

Outline

3. Evaluation

.. 11
3.1 Buffer Overflow (gain)coiiniiiiii e 12
3.2 CVE-2025-3300ottt e 14
3.3 High-Level Programming Languagesooiiiiiiiiiiiiiiii i, 16

CHERITech’25 Q@ CHERI

Evaluation
°

o

000

3.1 Buffer Overflow (again)

uint32 t c;

uint32 t buffer[l6];
uint32 t *bp = buffer;

int main() A

memset (bp, 0x42, sizeof(buffer) + sizeof(uint32 t));
printf("0x%08x\n", c);

1
2
3
4
5 assert((uintptr t)&c == (uintptr t)buffer + sizeof(buffer));
6
7
8 exit (EXIT FAILURE);

9

CHERITech’25 Q@ CHERI

Evaluation
°

o

000

1 $./buffer-overflow-aarch64 (s Shell
2 # 0x42424242

3 $./buffer-overflow-cheri

4 # In-address space security exception (core dumped)

1 $ LD_PRELOAD=./libcfe-ldst-preload.so ./buffer-overflow-cheri [GiShell]

signo: 34, code: 1, addr: 0x1109bc

lr: 0x402a08e9, sp: Oxfffffff7fc40, elr: Oxfffffff7fc50, ddc:
OXfffffff7fc60

inst: 10111001000000000100000000001000
ldst pos

store

Ox00000000

N O O b

CHERITech’25 Q) CHERI

Evaluation
O

°

000

3.2 CVE-2025-3360

A flaw was found in GLib. An integer overflow and buffer under-read occur when parsing a

long invalid ISO 8601 timestamp with the g date time new from is08601() function.

1
2
3
4

5

CHERITech’25

size t size = 2147483747; gchar *text = (gchar *)malloc(size); @iﬁi
memset (text, 'a', size); text[l] = 'T'; text[size - 1] = '\O';

GDateTime *dt = g date time new from iso8601(text, NULL);

if (dt) { gchar *formatted = g date time format 1s08601(dt);

g print("Date and Time: %s\n", formatted); g free(formatted);
g date time unref(dt); }

else { g print("Unable to decode\n"); }
free(text);

) CHERI

Evaluation
O

°

000

1 $./CVE-2025-3360 (9 Shell]
2 # In-address space security exception (core dumped)

1 $ LD PRELOAD=./libcfe-ldst-preload.so ./CVE-2025-3360 (9 Shell]
signo: 34, code: 1, addr: 0x402dd5b0

lr: 0x110a69, sp: Oxfffffff7fb70, elr: Oxfffffff7fb80, ddc:
OXfffffff7fb90

inst: 00111000011110100110101100001001
ldst regoff

load

Unable to decode

N O O b~

CHERITech’25 Q) CHERI

Evaluation
O

o

[Yeole!

3.3 High-Level Programming Languages

3.3.1 Lua (CVE-2020-24371 Heap UAF)

1 $ RUNTIME REVOCATION EVERY FREE ENABLE=1 lua CVE-2020-24371.1lua [GiShell]
2 # In-address space security exception (core dumped)

$ LD PRELOAD=./libcfe-ldst-preload.so
_RUNTIME REVOCATION EVERY FREE ENABLE=1 lua CVE-2020-24371.1lua

3

4 # lua: CVE-2020-24371.lua:23: assertion failed!
5 # stack traceback:

6 # [C]: in function 'assert'

7 # CVE-2020-24371.1ua:23: in main chunk
8 # [C]: in ?

Similar result for CVE-2020-15889, CVE-2020-24369 and CVE-2020-24370.

CHERITech’25 Q@ CHERI

Evaluation
O

o

000

3.3 High-Level Programming Languages

3.3.2 Perl (CVE-2024-56406 Heap Overflow)

1 $ perl -e '$ = "\x{FF}" x 1000000; tr/\xFF/\x{100}/;" [(B Shell]

2 # In-address space security exception (core dumped)

3 $ LD PRELOAD=./libcfe ldst preload.so perl -e '$ = "\x{FF}" x 1000000;
tr/\xFF/\x{100}/; "'

4 # ...

5 # (exit normally)

CHERITech’25 Q) CHERI

Availabil-
ity Bridge the gap between security

and resilience

« Strengthen CHERI's adoption in

Perfor- Compati- safety-critical domains
mance bility

	1. Background
	1.1 Memory Safety
	1.1.1 Spatial – e.g. Buffer Overflow
	1.1.2 Temporal – e.g. Use After Free
	1.1.3 Problem

	1.2 Capability Hardware Enhanced RISC Instructions (CHERI)
	1.3 Failure-Oblivious Computing + Boundless Memory Blocks

	2. Approach
	2.1 Point of Interest
	2.2 From language persepective
	2.3 From architecture persepective

	3. Evaluation
	3.1 Buffer Overflow (again)
	3.2 CVE-2025-3360
	3.3 High-Level Programming Languages
	3.3.1 Lua (CVE-2020-24371 Heap UAF)
	3.3.2 Perl (CVE-2024-56406 Heap Overflow)

