
Failure-Oblivious CHERI
How to bring resilience to CHERI?

Ka Wing Li

CHERITech’25

2025-11-14

Outline
1. Background . ⁠1

1.1 Memory Safety . ⁠2

1.2 Capability Hardware Enhanced RISC Instructions (CHERI) . ⁠4

1.3 Failure-Oblivious Computing + Boundless Memory Blocks . ⁠5

2. Approach . ⁠6

2.1 Point of Interest . ⁠7

2.2 From language persepective . ⁠8

2.3 From architecture persepective . ⁠10

3. Evaluation . ⁠11

3.1 Buffer Overflow (again) . ⁠12

3.2 CVE-2025-3360 . ⁠14

3.3 High-Level Programming Languages . ⁠16

CHERITech’25

Background
●○○
○
○

Approach
○
○○○
○

Evaluation
○
○
○○○

1.1 Memory Safety

1.1.1 Spatial – e.g. Buffer Overflow

1 uint32_t c; C

2 uint32_t buffer[16];

3 uint32_t *bp = buffer;

4 int main() {

5 assert((uintptr_t)&c == (uintptr_t)buffer + sizeof(buffer));

6 memset(bp, 0x42, sizeof(buffer) + sizeof(uint32_t));

7 printf("0x%08x\n", c);

8 exit(EXIT_FAILURE);

9 }

CHERITech’25

Background
○●○
○
○

Approach
○
○○○
○

Evaluation
○
○
○○○

1.1 Memory Safety

1.1.2 Temporal – e.g. Use After Free

1 uint32_t *np; C

2 int main() {

3 if ((np = malloc(sizeof(*np))) == NULL) err(EXIT_FAILURE, "malloc");

4 *np = 0x42; /* Allocated. */

5 free(np);

6 *np = 0x8; /* Freed, but in quarantine. */

7 malloc_revoke_quarantine_force_flush();

8 printf("0x%08x\n", *np); /* Revoked. */

9 exit(EXIT_FAILURE);

10 }

CHERITech’25

1.1.3 Problem

Security

vs

Reliability

Background
○○○
●
○

Approach
○
○○○
○

Evaluation
○
○
○○○

1.2 Capability Hardware Enhanced RISC Instructions (CHERI)

Architectural capability in CHERI ISA version 9

64-bit address

perms otype bounds

v

12
8-

b
it

ca
p

ab
il

it
y

1-
b
it

ta
g

Pointer provenance valid capabilities can only be derived from existing valid capabilities

Capability monotonicity guarded derivation of new capabilities may narrow but never

broaden right.

CHERITech’25

Background
○○○
○
●

Approach
○
○○○
○

Evaluation
○
○
○○○

1.3 Failure-Oblivious Computing + Boundless Memory Blocks

Failure-Oblivious Computing

• in-bound access granted

• suppress out-of-bound loads

• suppress out-of-bound stores
… 𝑎

1
𝑎
2 … 𝑎

𝑛 …

0 𝑎
1

𝑎
𝑛 𝑖

✗

return zeros for

out-of-bound loads,

rather than faulting

suppress out-of-bound stores,

rather than faulting

Boundless Memory Blocks

• redirect invalid memory access to LRU cache

• return manufactured (random) sequence of values for uninitialized memory

CHERITech’25

Outline
1. Background . ⁠1

1.1 Memory Safety . ⁠2

1.2 Capability Hardware Enhanced RISC Instructions (CHERI) . ⁠4

1.3 Failure-Oblivious Computing + Boundless Memory Blocks . ⁠5

2. Approach . ⁠6

2.1 Point of Interest . ⁠7

2.2 From language persepective . ⁠8

2.3 From architecture persepective . ⁠10

3. Evaluation . ⁠11

3.1 Buffer Overflow (again) . ⁠12

3.2 CVE-2025-3360 . ⁠14

3.3 High-Level Programming Languages . ⁠16

CHERITech’25

Background
○○○
○
○

Approach
●
○○○
○

Evaluation
○
○
○○○

2.1 Point of Interest

Exception direction

Mitigation approach

Software Hardware

Userspace Kernel

CHERITech’25

Background
○○○
○
○

Approach
○
●○○
○

Evaluation
○
○
○○○

2.2 From language persepective

• Null-terminated byte strings

• Off-by-one error

Bounds-checking interfaces, Annex K in the ISO C standard

1 size_t strlen(const char *s); C

2 size_t strnlen_s(const char *s, size_t maxsize);

3 char buffer[4] = "ABCD"; // missing null-terminator

4 printf("%d", strlen(buffer));

5 printf("%d", strnlen_s(buffer, 8)); // wrong size

CHERITech’25

Library can obtain the metadata of a capability

Background
○○○
○
○

Approach
○
○○●
○

Evaluation
○
○
○○○

2.2 From language persepective

CHERI-aware libc

1 size_t strnlen_c(const char *s, size_t maxsize) { C

2 auto bound = cheri_get_metadata(s);

3 if (!bound.valid) return 0;

4 if (bound.remain < maxsize) maxsize = bound.remain; // correct bound

5 return strnlen_s(s, maxsize);

6 }

• unintended truncation? • new C library semantics? • runtime overhead?

CHERITech’25

Background
○○○
○
○

Approach
○
○○○
●

Evaluation
○
○
○○○

2.3 From architecture persepective

• instruction-fetch failures

• load and store failures

1 void print_secret() { printf("secret info\n"); } C

2 char b[1024];

3 memcpy(b, print_secret, 1024);

4 void (*fp)() = (void (*)())b;

5 (*fp)();

CHERITech’25

Outline
1. Background . ⁠1

1.1 Memory Safety . ⁠2

1.2 Capability Hardware Enhanced RISC Instructions (CHERI) . ⁠4

1.3 Failure-Oblivious Computing + Boundless Memory Blocks . ⁠5

2. Approach . ⁠6

2.1 Point of Interest . ⁠7

2.2 From language persepective . ⁠8

2.3 From architecture persepective . ⁠10

3. Evaluation . ⁠11

3.1 Buffer Overflow (again) . ⁠12

3.2 CVE-2025-3360 . ⁠14

3.3 High-Level Programming Languages . ⁠16

CHERITech’25

Background
○○○
○
○

Approach
○
○○○
○

Evaluation
●
○
○○○

3.1 Buffer Overflow (again)

1 uint32_t c; C

2 uint32_t buffer[16];

3 uint32_t *bp = buffer;

4 int main() {

5 assert((uintptr_t)&c == (uintptr_t)buffer + sizeof(buffer));

6 memset(bp, 0x42, sizeof(buffer) + sizeof(uint32_t));

7 printf("0x%08x\n", c);

8 exit(EXIT_FAILURE);

9 }

CHERITech’25

Background
○○○
○
○

Approach
○
○○○
○

Evaluation
●
○
○○○

1 $./buffer-overflow-aarch64 Shell

2 # 0x42424242

3 $./buffer-overflow-cheri

4 # In-address space security exception (core dumped)

1 $ LD_PRELOAD=./libcfe-ldst-preload.so ./buffer-overflow-cheri Shell

2 # signo: 34, code: 1, addr: 0x1109bc

3
lr: 0x402a08e9, sp: 0xfffffff7fc40, elr: 0xfffffff7fc50, ddc:

0xfffffff7fc60

4 # inst: 10111001000000000100000000001000

5 # ldst_pos

6 # store

7 # 0x00000000

CHERITech’25

Background
○○○
○
○

Approach
○
○○○
○

Evaluation
○
●
○○○

3.2 CVE-2025-3360

A flaw was found in GLib. An integer overflow and buffer under-read occur when parsing a

long invalid ISO 8601 timestamp with the g_date_time_new_from_iso8601() function.

1 size_t size = 2147483747; gchar *text = (gchar *)malloc(size); C

2 memset(text, 'a', size); text[1] = 'T'; text[size - 1] = '\0';

3 GDateTime *dt = g_date_time_new_from_iso8601(text, NULL);

4 if (dt) { gchar *formatted = g_date_time_format_iso8601(dt);

5
g_print("Date and Time: %s\n", formatted); g_free(formatted);

g_date_time_unref(dt); }

6 else { g_print("Unable to decode\n"); }

7 free(text);

CHERITech’25

Background
○○○
○
○

Approach
○
○○○
○

Evaluation
○
●
○○○

1 $./CVE-2025-3360 Shell

2 # In-address space security exception (core dumped)

1 $ LD_PRELOAD=./libcfe-ldst-preload.so ./CVE-2025-3360 Shell

2 # signo: 34, code: 1, addr: 0x402dd5b0

3
lr: 0x110a69, sp: 0xfffffff7fb70, elr: 0xfffffff7fb80, ddc:

0xfffffff7fb90

4 # inst: 00111000011110100110101100001001

5 # ldst_regoff

6 # load

7 # Unable to decode

CHERITech’25

Background
○○○
○
○

Approach
○
○○○
○

Evaluation
○
○
●○○

3.3 High-Level Programming Languages

3.3.1 Lua (CVE-2020-24371 Heap UAF)

1 $ _RUNTIME_REVOCATION_EVERY_FREE_ENABLE=1 lua CVE-2020-24371.lua Shell

2 # In-address space security exception (core dumped)

3
$ LD_PRELOAD=./libcfe-ldst-preload.so

_RUNTIME_REVOCATION_EVERY_FREE_ENABLE=1 lua CVE-2020-24371.lua

4 # lua: CVE-2020-24371.lua:23: assertion failed!

5 # stack traceback:

6 # [C]: in function 'assert'

7 # CVE-2020-24371.lua:23: in main chunk

8 # [C]: in ?

Similar result for CVE-2020-15889, CVE-2020-24369 and CVE-2020-24370.

CHERITech’25

Background
○○○
○
○

Approach
○
○○○
○

Evaluation
○
○
○●○

3.3 High-Level Programming Languages

3.3.2 Perl (CVE-2024-56406 Heap Overflow)

1 $ perl -e '$_ = "\x{FF}" x 1000000; tr/\xFF/\x{100}/;' Shell

2 # In-address space security exception (core dumped)

3
$ LD_PRELOAD=./libcfe_ldst_preload.so perl -e '$_ = "\x{FF}" x 1000000;

tr/\xFF/\x{100}/;'

4 # ...

5 # (exit normally)

CHERITech’25

Security
Availabil

ity

Compati

bility

Perfor

mance

• Bridge the gap between security

and resilience

• Strengthen CHERI’s adoption in

safety-critical domains

	1. Background
	1.1 Memory Safety
	1.1.1 Spatial – e.g. Buffer Overflow
	1.1.2 Temporal – e.g. Use After Free
	1.1.3 Problem

	1.2 Capability Hardware Enhanced RISC Instructions (CHERI)
	1.3 Failure-Oblivious Computing + Boundless Memory Blocks

	2. Approach
	2.1 Point of Interest
	2.2 From language persepective
	2.3 From architecture persepective

	3. Evaluation
	3.1 Buffer Overflow (again)
	3.2 CVE-2025-3360
	3.3 High-Level Programming Languages
	3.3.1 Lua (CVE-2020-24371 Heap UAF)
	3.3.2 Perl (CVE-2024-56406 Heap Overflow)

