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1.1 Memory Safety

1.1.1 Spatial - e.g. Buffer Overflow

uint32 t c;

uint32 t buffer[l6];

uint32 t *bp = buffer;

int main() {
assert((uintptr t)&c == (uintptr t)buffer + sizeof(buffer));
memset (bp, 0x42, sizeof(buffer) + sizeof(uint32 t));
printf("0x%08x\n", c);
exit (EXIT FAILURE);

© 00 NN OO U A~ W N B

CHERITech’25 Q@ CHERI



Background
0®0

o)

o)

1.1 Memory Safety

1.1.2 Temporal - e.g. Use After Free
uint32_t *np;

1

2 int main() {

3 if ((np = malloc(sizeof(*np))) == NULL) err(EXIT FAILURE, "malloc");
4 *np = 0x42; /* Allocated. */

5 free(np);

6 *np = 0x8; /* Freed, but in quarantine. */

7 malloc revoke quarantine force flush();

8 printf("0x%08x\n", *np); /* Revoked. */

9 exit (EXIT FAILURE);

10 }
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CHERI mitigate 100%
spatial memory errors!

(

Let it crash.

(
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What happen for out-of-
bound memory access?

The other day...
Breaking news. CHERI-

aware plane crash due
to software bug. ~~~

Security
VS

Reliability



Background
000

°

o)

1.2 Capability Hardware Enhanced RISC Instructions (CHERI)
Architectural capability in CHERI ISA version 9
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perms otype bounds

128-bit
capability

64-bit address

Pointer provenance valid capabilities can only be derived from existing valid capabilities
Capability monotonicity guarded derivation of new capabilities may narrow but never
broaden right.
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1.3 Failure-Oblivious Computing + Boundless Memory Blocks

Failure-Oblivious Computing

« in-bound access granted

- suppress out-of-bound loads
- suppress out-of-bound stores

Boundless Memory Blocks

« redirect invalid memory access to LRU cache

return zeros for

0 a’l out-of-bound loads,

S S rather than faulting

suppress out-of-bound stores,

rather than faulting

« return manufactured (random) sequence of values for uninitialized memory
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2.1 Point of Interest

<

Exception direction

Software Hardware

Userspace Kernel

Mitigation approach
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2.2 From language persepective

 Null-terminated byte strings
« Off-by-one error

Bounds-checking interfaces, Annex K in the ISO C standard

size_t strlen(const char *s);
size t strnlen s(const char *s, size t maxsize);
char buffer[4] = "ABCD"; // missing null-terminator

printf("%sd", strlen(buffer));
printf("%d", strnlen s(buffer, 8)); // wrong size
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Library can obtain the metadata of a capability
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2.2 From language persepective

CHERI-aware libc

size t strnlen c(const char *s, size t maxsize) {
auto bound = cheri get metadata(s);
if (!bound.valid) return 0;

1
2
3
4 if (bound.remain < maxsize) maxsize = bound.remain; // correct bound
5 return strnlen s(s, maxsize);

§)

}

« unintended truncation? « new C library semantics? « runtime overhead?
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2.3 From architecture persepective

 instruction-fetch failures
. load and store failures

vold print secret() { printf("secret info\n"); } @il!
char b[1024];

memcpy (b, print secret, 1024);

void (*fp)() = (void (*)())b;

(*fp) ();

g A W N =
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3.1 Buffer Overflow (again)

uint32 t c;

uint32 t buffer[l6];
uint32 t *bp = buffer;

int main() A

memset (bp, 0x42, sizeof(buffer) + sizeof(uint32 t));
printf("0x%08x\n", c);

1
2
3
4
5 assert((uintptr t)&c == (uintptr t)buffer + sizeof(buffer));
6
7
8 exit (EXIT FAILURE);

9
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1 $ ./buffer-overflow-aarch64 (s Shell
2 # 0x42424242

3 $ ./buffer-overflow-cheri

4 # In-address space security exception (core dumped)

1 $ LD_PRELOAD=./libcfe-ldst-preload.so ./buffer-overflow-cheri [GiShell]

# signo: 34, code: 1, addr: 0x1109bc

# lr: 0x402a08e9, sp: Oxfffffff7fc40, elr: Oxfffffff7fc50, ddc:
OXfffffff7fc60

# inst: 10111001000000000100000000001000
# ldst pos

# store

# Ox00000000
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3.2 CVE-2025-3360

A flaw was found in GLib. An integer overflow and buffer under-read occur when parsing a

long invalid ISO 8601 timestamp with the g date time new from is08601() function.

1
2
3
4

5

CHERITech’25

size t size = 2147483747; gchar *text = (gchar *)malloc(size); @iﬁi
memset (text, 'a', size); text[l] = 'T'; text[size - 1] = '\O';

GDateTime *dt = g date time new from iso8601(text, NULL);

if (dt) { gchar *formatted = g date time format 1s08601(dt);

g print("Date and Time: %s\n", formatted); g free(formatted);
g date time unref(dt); }

else { g print("Unable to decode\n"); }
free(text);
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1 $ ./CVE-2025-3360 (9 Shell]
2 # In-address space security exception (core dumped)

1 $ LD PRELOAD=./libcfe-ldst-preload.so ./CVE-2025-3360 (9 Shell]
# signo: 34, code: 1, addr: 0x402dd5b0

# lr: 0x110a69, sp: Oxfffffff7fb70, elr: Oxfffffff7fb80, ddc:
OXfffffff7fb90

# inst: 00111000011110100110101100001001
# ldst regoff

# load

# Unable to decode

N O O b~
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3.3 High-Level Programming Languages

3.3.1 Lua (CVE-2020-24371 Heap UAF)

1 $ RUNTIME REVOCATION EVERY FREE ENABLE=1 lua CVE-2020-24371.1lua [GiShell]
2 # In-address space security exception (core dumped)

$ LD PRELOAD=./libcfe-ldst-preload.so
_RUNTIME REVOCATION EVERY FREE ENABLE=1 lua CVE-2020-24371.1lua

3

4 # lua: CVE-2020-24371.lua:23: assertion failed!
5 # stack traceback:

6 # [C]: in function 'assert'

7 # CVE-2020-24371.1ua:23: in main chunk
8 # [C]: in ?

Similar result for CVE-2020-15889, CVE-2020-24369 and CVE-2020-24370.
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3.3 High-Level Programming Languages

3.3.2 Perl (CVE-2024-56406 Heap Overflow)

1 $ perl -e '$ = "\x{FF}" x 1000000; tr/\xFF/\x{100}/;" [(B Shell]

2 # In-address space security exception (core dumped)

3 $ LD PRELOAD=./libcfe ldst preload.so perl -e '$ = "\x{FF}" x 1000000;
tr/\xFF/\x{100}/; "'

4 # ...

5 # (exit normally)
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Availabil-
ity  Bridge the gap between security

and resilience

« Strengthen CHERI's adoption in

Perfor- Compati- safety-critical domains
mance bility
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